MHB Maximize 2sinxcosx/[(1+sinx)(1+cosx)]

  • Thread starter Thread starter anemone
  • Start date Start date
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Maximize $\dfrac{2\sin x \cos x}{(1+\sin x)(1+\cos x)}$ for $x\in \left(0, \dfrac{\pi}{2}\right)$.
 
Mathematics news on Phys.org
AM-GM inequality
 
$\begin{align*}\dfrac{2\sin x \cos x}{(1+\sin x)(1+\cos x)}&=\dfrac{2\sin x \cos x (1-\sin x)}{(1-\sin^2 x)(1+2\cos^2 \dfrac{x}{2}-1)}\\&=\dfrac{2\sin x \cos x (1-\sin x)}{(\cos^2 x)(2\cos^2 \dfrac{x}{2})}\\&=\dfrac{\sin x}{\cos x}\left(\dfrac{1-2\sin \dfrac{x}{2} \cos \dfrac{x}{2}}{\cos^2 \dfrac{x}{2}}\right)\\&=\tan x\left(\sec^2 \dfrac{x}{2}-2\tan \dfrac{x}{2}\right)\\&=\dfrac{2\tan \dfrac{x}{2}}{1-\tan^2 \dfrac{x}{2}}\left(1+\tan^2 \dfrac{x}{2}-2\tan \dfrac{x}{2}\right)\\&=2\tan \dfrac{x}{2}\dfrac{\left(1-\tan \dfrac{x}{2}\right)\left(1-\tan \dfrac{x}{2}\right)}{\left(1+\tan \dfrac{x}{2}\right)\left(1-\tan \dfrac{x}{2}\right)}\\&=2\tan \dfrac{x}{2}\left(\dfrac{\tan \dfrac{\pi}{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi}{2}\tan \dfrac{x}{2}}\right)\\&=2\tan \dfrac{x}{2}\tan \left( \dfrac{\pi}{4}-\dfrac{x}{2}\right)\end{align*}$

Therefore by the AM-GM inequality,

$\begin{align*}\sqrt{\dfrac{2\sin x \cos x}{(1+\sin x)(1+\cos x)}}&=\sqrt{2\tan \dfrac{x}{2}\tan \left( \dfrac{\pi}{4}-\dfrac{x}{2}\right)}\le \dfrac{\sqrt{2}}{2}\left(\tan \dfrac{\pi}{2}+\tan \left( \dfrac{\pi}{4}-\dfrac{x}{2}\right)\right)\end{align*}$

Equality attains when $\tan \dfrac{\pi}{2}=\tan \left( \dfrac{\pi}{4}-\dfrac{x}{2}\right)$, i.e. when $x=\dfrac{\pi}{4}$ where $\tan \dfrac{\pi}{8}=\sqrt{2}-1$, an exact value we could get from using the double angle formula for $\tan x$ and that $\tan \dfrac{\pi}{4}=1$.

Hence $\dfrac{2\sin x \cos x}{(1+\sin x)(1+\cos x)}\le 2(\sqrt{2}-1)^2=2(3-2\sqrt{2})$.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
1K