Advice to obtain the domain of compound functions

In summary, the conversation discusses the inverse of secondary trigonometric functions, specifically the inverse function of secant. The definition and domain of this inverse function are given, along with its graph and an identity involving it. The speaker expresses confusion about how to determine the domain and range of a function given only its identities. There is also a discussion about a possible typo in the original text.
  • #1
mcastillo356
Gold Member
601
330
TL;DR Summary
I'm familiar to this ground, but the function composition I introduce is difficult for me
Hi PF

I have a quote from Spanish 6th edition of "Calculus", by Robert A. Adams, and some queries. I translate it this way:"The inverse of secondary trigonometric functions can easily be calculated with the reciprocal function. For example
DEFINITION 13 The inverse function of secant ##sec^{-1} x## (or ##\mbox{arcsec}x##)
$$sec^{-1}=cos^{-1}\left({\dfrac{1}{x}}\right)\quad for\;|x|\geq 1$$
The domain of ##\sec^{-1}## is the union of intervals ##(-\infty,-1]\cup{[1,\infty)}## and ##[0,\dfrac{\pi}{2})\cup{(\dfrac{\pi}{2},\pi)}##. The graph of ##y=sec^{-1}x## is shown in Figure 3.25(b)(*). Is the reflection respect to the line ##y=x## of the part of ##\sec x## for ##x## between 0 and ##\pi##. Additionally
$$\sec(\sec^{-1}x)=\sec\left({\cos^{-1}\left({\dfrac{1}{x}}\right)}\right)
=\dfrac{1}{\cos\left({\cos^{-1}\left({\dfrac{1}{x}}\right)}\right)}=\dfrac{1}{\dfrac{1}{x}}=x\qquad{\mbox{for}\;|x|\geq 1}$$Up to now I've got to deal only with very easy compound functions. This quote represents a qualitative step forward. The domains and ranges are shown, but I would like to know: what if I had to do it by myself, if I was given only the identities, and had to manage to describe the domain and range of, suppose, the one at DEFINITION 13?

$$cos^{-1}\left({\dfrac{1}{x}}\right)$$

With no other help but the knowledge of the domain of ##y=\mbox{arcos}(x)##, ##(-1\leq x\leq 1)##, and ##\mathbb{R}\setminus{\{0\}}## for ##\dfrac{1}{x}##

As well, isn't there a mistake, a typo, at the sentence "Is the reflection respect to the line ##y=x## of the part of ##\sec x## for ##x## between 0 and ##\pi##"? Shouldn't be "of the part of ##sec^{-1} x##"?.

(*)Attached image

Attempt: Pure speculation; don't know why, but I've come across this statement: domain shouldn't be the intersection of the domain of ##y=\cos x## and the domain of the inverse function of ##y=\dfrac{1}{x}##?
 

Attachments

  • geogebra-export (2).png
    geogebra-export (2).png
    23.7 KB · Views: 110
Last edited by a moderator:
Mathematics news on Phys.org
  • #2
I've typed the formulas with #### and $$$$. Why didn't I post successfully?. :oldcry:
 
  • #3
mcastillo356 said:
I've typed the formulas with #### and $$$$. Why didn't I post successfully?. :oldcry:
You have simple forgotten a single "#" somewhere early. That was all. I corrected it.
 
  • Love
Likes mcastillo356

Similar threads

Replies
2
Views
1K
Replies
1
Views
948
Replies
7
Views
1K
Replies
2
Views
925
Replies
5
Views
1K
Replies
5
Views
1K
Replies
11
Views
1K
Back
Top