MHB Maximizing Likelihood Estimator of β

  • Thread starter Thread starter jmorgan
  • Start date Start date
  • Tags Tags
    Likelihood
jmorgan
Messages
5
Reaction score
0
Assuming α is known, find the maximum likelihood estimator of β

f(x;α,β) = , 1 ,,,,,,, .(xα.e-x/β)
,,,,,, ,,,,,,α!βα+1

I know that firstly you must take the likelihood of L(β). But unsure if I have done it correctly. I came out with the answer below, please can someone tell me where/if I have gone wrong.

L(β)= (α!βα+1)-n.Σxiα.eΣxi/βn
 
Physics news on Phys.org
I don't understand your question. The "maximum Likelihood" estimator for a parameter is the value of the parameter that makes a given outcome most likely. But you have not given an "outcome" here.
 
I think that you're going in the right direction. However, your calculation is not entirely correct. Suppose that we have given observations $x_1,\ldots,x_n$ from the given distribution. The likelihood is then given by
$$\mathcal{L}(x_1,\ldots,x_n,\alpha,\beta) = \prod_{i=1}^{n} \frac{1}{\alpha ! \beta^{\alpha+1}} x_i^{\alpha}e^{-x_i/\beta}.$$
We wish to find the value of $\beta$ that maximizes the likelihood. Since it is quite common to work with the logarithm, let us first take the log of both sides:
$$\log \mathcal{L}(x_1,\ldots,x_n,\alpha,\beta) = -n \log(\alpha) - n (\alpha+1) \log(\beta)+ \alpha \sum_{i=1}^{n} \log(x_i) - \frac{\sum_{i=1}^{n} x_i}{\beta}.$$
Taking the derivative w.r.t $\beta$, we obtain
$$\frac{\partial \log \mathcal{L}(x_1,\ldots,x_n,\alpha,\beta)}{d\beta} = -n(\alpha+1)\frac{1}{\beta} - \frac{1}{\beta^2} \sum_{i=1}^{n} x_i.$$
To proceed, set the RHS equal to $0$ and solve for $\beta$. This is the required MLE.
 
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.
Back
Top