MHB Maximum Value of $x$ with Given Constraints?

  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Maximum
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $x,\,y,\,z$ be real numbers such that $x+2y+3z=86$ and $x^2+y^2+z^2=2014$.

Find the maximum of $x$.
 
Mathematics news on Phys.org
My Solution:

Given $2y+3z = 86-x$ and $y^2+z^2 = 2014-x^2$

Now Using Cauchy-Schwartz Inequality, We Get

$\displaystyle (2^2+3^2)\cdot (y^2+z^2)\geq (2y+3z)^2\Rightarrow 13\cdot (2014-x^2)\geq (86-x)^2$

So $\displaystyle (7x-303)\cdot (x+31)\leq 0$

So $\displaystyle -31\leq x \leq \frac{303}{7}$
 
Last edited by a moderator:
jacks said:
My Solution:

Given $2y+3z = 86-x$ and $y^2+z^2 = 2014-x^2$

Now Using Cauchy-Schwartz Inequality, We Get

$\displaystyle (2^2+3^2)\cdot (y^2+z^2)\geq (2y+3z)^2\Rightarrow 13\cdot (2014-x^2)\geq (86-x)^2$

So $\displaystyle (7x-303)\cdot (x+31)\leq 0$

So $\displaystyle -31\leq x \leq \frac{303}{7}$

Bravo, jacks!(Yes) And thanks for participating!:)
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagoras'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...

Similar threads

Back
Top