Maxwell Equations Absorbent Boundary Conditions

AI Thread Summary
Absorptive boundary conditions in electromagnetic field simulations are designed to simulate open boundaries and minimize reflections within a computational domain. The key to their effectiveness lies in matching the impedance at the boundary, which prevents reflections when properly implemented. The discussion highlights the need for clarity on how specific conditions, like 1.2c), facilitate this process. Participants are encouraged to share insights and references to deepen understanding of these concepts. Overall, the focus is on the practical implementation and physical interpretation of these boundary conditions.
gltau99
Messages
3
Reaction score
1
TL;DR Summary
Looking for explanations on how absorptive boundary conditions in Maxwell's equations simulate open boundaries in electromagnetic simulations, preventing artificial reflections.
Hi everyone,

I'm trying to understand the purpose and functionality of absorptive boundary conditions used in simulations of electromagnetic fields. Specifically, how do this conditions 1.2c):

1725869183308.png


with

1725869214080.png

(and ν the unit outward normal on the boundary Γ; Pτ , the projection of the trace operator)

simulate an open boundary and prevent reflections within a bounded computational domain? Any insights into their physical interpretation or practical implementation would be very helpful.


References:
https://www.semanticscholar.org/pap...ntos/64177e2129da814049dba96c0478821aa8bb8224

https://epubs.siam.org/doi/pdf/10.1137/S0036139995289234
Thank you!
 
Last edited:
Engineering news on Phys.org
Baluncore said:
Welcome to PF.

If the impedance is matched, there will be no reflection.
Space cloth. https://en.wikipedia.org/wiki/Space_cloth
Thank you for the answer. But how does condition 1.2c) enforce that ?
 
Last edited:
gltau99 said:
and how does condition 1.2c) enforce that ?
Can you add a link to your reference please? Thanks.
 
Hi all I have some confusion about piezoelectrical sensors combination. If i have three acoustic piezoelectrical sensors (with same receive sensitivity in dB ref V/1uPa) placed at specific distance, these sensors receive acoustic signal from a sound source placed at far field distance (Plane Wave) and from broadside. I receive output of these sensors through individual preamplifiers, add them through hardware like summer circuit adder or in software after digitization and in this way got an...
I have recently moved into a new (rather ancient) house and had a few trips of my Residual Current breaker. I dug out my old Socket tester which tell me the three pins are correct. But then the Red warning light tells me my socket(s) fail the loop test. I never had this before but my last house had an overhead supply with no Earth from the company. The tester said "get this checked" and the man said the (high but not ridiculous) earth resistance was acceptable. I stuck a new copper earth...
Thread 'Beauty of old electrical and measuring things, etc.'
Even as a kid, I saw beauty in old devices. That made me want to understand how they worked. I had lots of old things that I keep and now reviving. Old things need to work to see the beauty. Here's what I've done so far. Two views of the gadgets shelves and my small work space: Here's a close up look at the meters, gauges and other measuring things: This is what I think of as surface-mount electrical components and wiring. The components are very old and shows how...
Back
Top