MHB Mechanics- connected particles

Click For Summary
SUMMARY

The discussion focuses on calculating the total time for a mechanics problem involving connected particles with two different accelerations. The first acceleration, $a_1$, is calculated as 8 m/s², leading to a time of 0.5 seconds for the first part of the motion. The second acceleration, $a_2$, is determined to be -2 m/s², resulting in an additional time of 2 seconds. The total time for the entire motion is confirmed to be 2.5 seconds, aligning with the textbook answer.

PREREQUISITES
  • Understanding of Newton's second law of motion
  • Familiarity with kinematic equations
  • Knowledge of frictional forces and their impact on motion
  • Basic algebra for solving equations
NEXT STEPS
  • Study the derivation and application of Newton's second law in various contexts
  • Learn about kinematic equations and their use in solving motion problems
  • Explore the effects of friction on motion, including static and kinetic friction
  • Practice solving complex mechanics problems involving multiple masses and accelerations
USEFUL FOR

Students studying physics, particularly those focusing on mechanics, as well as educators and tutors seeking to clarify concepts related to motion and forces in connected systems.

Shah 72
MHB
Messages
274
Reaction score
0
20210530_220932.jpg

I calculated a=8m/s^2. I don't understand how to calculate the total time.
 
Mathematics news on Phys.org
same concepts apply to this problem as with the other posted pulley problem ...
 
skeeter said:
same concepts apply to this problem as with the other posted pulley problem ...
Using s= 1/2at^2, 5=1/2×8×t^2
t=1.12s
After this how do I calculate? It's confusing.
 
The problem requires calculation of two accelerations. The first, $a_1$, is determined by the equations

$T - f_k = ma_1$
$Mg - T = Ma_1$

The second acceleration, $a_2$, is only for the smaller mass …

$-f_k = ma_2$

The small mass moves only 1m with acceleration $a_1$. After moving that 1m, tension becomes zero when the larger mass hits the ground. The smaller mass continues moving with acceleration $a_2$ until it comes to a stop.
 
skeeter said:
The problem requires calculation of two accelerations. The first, $a_1$, is determined by the equations

$T - f_k = ma_1$
$Mg - T = Ma_1$

The second acceleration, $a_2$, is only for the smaller mass …

$-f_k = ma_2$

The small mass moves only 1m with acceleration $a_1$. After moving that 1m, tension becomes zero when the larger mass hits the ground. The smaller mass continues moving with
 
skeeter said:
The problem requires calculation of two accelerations. The first, $a_1$, is determined by the equations

$T - f_k = ma_1$
$Mg - T = Ma_1$

The second acceleration, $a_2$, is only for the smaller mass …

$-f_k = ma_2$

The small mass moves only 1m with acceleration $a_1$. After moving that 1m, tension becomes zero when the larger mass hits the ground. The smaller mass continues moving with acceleration $a_2$ until it comes to a stop.
So a= 8m/s^2
S= ut +1/2at^2
1=1/2×8×t^2, t=0.5s
I calculated v=4m/s
F=m×a
-5=0.5×a
a=-10m/s^2
I still don't get the ans mentioned in the textbook which is t= 2.5s
 
correct on the first part …

$a_1= 8 \, m/s^2 \implies t_1 = 0.5 \, s \implies v_f = a_1 t_1 = 4 \, m/s$

$v_f = 4 \, m/s$ becomes $v_0$ for the second part …

$a_2 = -\mu g = -2 \, m/s^2$

$v_f = v_0 + a_2t_2 \implies 0 = 4 - 2t_2 \implies t_2 = 2 \, s$

$t_1+t_2 = 2.5 \, s$
 
skeeter said:
correct on the first part …

$a_1= 8 \, m/s^2 \implies t_1 = 0.5 \, s \implies v_f = a_1 t_1 = 4 \, m/s$

$v_f = 4 \, m/s$ becomes $v_0$ for the second part …

$a_2 = -\mu g = -2 \, m/s^2$

$v_f = v_0 + a_2t_2 \implies 0 = 4 - 2t_2 \implies t_2 = 2 \, s$

$t_1+t_2 = 2.5 \, s$
Thank you so so so so so so much!
 

Similar threads

  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
859
  • · Replies 3 ·
Replies
3
Views
992
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 8 ·
Replies
8
Views
1K
  • · Replies 6 ·
Replies
6
Views
1K