MHB Mechanics- connected particles

Click For Summary
Two particles, A (8 kg) and B (5 kg), are connected by a string over a pulley and released from a height of 1.2 m. When particle A hits the ground, it does not bounce, and particle B reaches a maximum height of 2.68 m. To find the time until B hits the ground after A's descent, the acceleration of the system can be calculated using the tension equations. The upward velocity of B when A reaches the ground can be determined, followed by calculating the time it takes for B to fall under gravity. The discussion emphasizes the need for proper calculations to solve the problem effectively.
Shah 72
MHB
Messages
274
Reaction score
0
Two particles A and B are attached to the ends of a light inextensible string, which passes over a smooth pulley. Particle A has mass 8 kg and particle B has mass 5kg. Both the particles are held 1.2m above the ground. The system is released from rest and the particles move vertically.
a) when particle A hits the ground, it does not bounce. Find the max height reached by particle B
b) when particle A hits the ground, the string is cut. Find the total time from being released from rest until B hits the ground.
I don't understand how to calculate.
 
Mathematics news on Phys.org
Shah 72 said:
Two particles A and B are attached to the ends of a light inextensible string, which passes over a smooth pulley. Particle A has mass 8 kg and particle B has mass 5kg. Both the particles are held 1.2m above the ground. The system is released from rest and the particles move vertically.
a) when particle A hits the ground, it does not bounce. Find the max height reached by particle B
b) when particle A hits the ground, the string is cut. Find the total time from being released from rest until B hits the ground.
I don't understand how to calculate.
I understood how to calculate. Thanks!
 
Shah 72 said:
Two particles A and B are attached to the ends of a light inextensible string, which passes over a smooth pulley. Particle A has mass 8 kg and particle B has mass 5kg. Both the particles are held 1.2m above the ground. The system is released from rest and the particles move vertically.
a) when particle A hits the ground, it does not bounce. Find the max height reached by particle B
b) when particle A hits the ground, the string is cut. Find the total time from being released from rest until B hits the ground.
Iam not getting the ans for (b)
For the time when A hits the ground
V= u+at
t1= 1.02s
Max height traveled by B is 2.68.
When the string is cut, T= 0, a=-g=-10m/s^2
Iam not able to calculate.
 
how 😭😭
 
Shah 72 said:
Two particles A and B are attached to the ends of a light inextensible string, which passes over a smooth pulley. Particle A has mass 8 kg and particle B has mass 5kg. Both the particles are held 1.2m above the ground. The system is released from rest and the particles move vertically.
a) when particle A hits the ground, it does not bounce. Find the max height reached by particle B
b) when particle A hits the ground, the string is cut. Find the total time from being released from rest until B hits the ground.

maha said:
how 😭😭

$M$ = 8kg, $m$ = 5kg, $T$ is the tension force in the string

$Mg - T = Ma$
$T - mg = ma$

Solve the system of equations for $a$, the magnitude of the acceleration for both masses. Once you find that acceleration, you can find the upward velocity of the smaller mass when the larger one hits the ground …
$v_f^2 = v_0^2 + 2a \Delta y$
At that time, the smaller mass is strictly under the influence of gravity, and one can determine the height the small mass rises above its initial height of 2.4 m, using a variation of the above equation …
$v_f^2 = v_0^2 - 2g \Delta y$

See what you can do from here.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 6 ·
Replies
6
Views
993
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K