A Metric of the "space" of 3d rotations

  • A
  • Thread starter Thread starter pervect
  • Start date Start date
  • Tags Tags
    Metric Space
pervect
Staff Emeritus
Science Advisor
Homework Helper
Insights Author
Messages
10,396
Reaction score
1,573
I was recently reading that the space of 3d rotations should have the topology of a real projective space. For confirmation, see wiki, https://en.wikipedia.org/wiki/3D_rotation_group.

wiki said:
The Lie group SO(3) is diffeomorphic to the real projective space P 3 ( R ) . {\displaystyle \mathbb {P} ^{3}(\mathbb {R} ).}[4]

Consider the solid ball in R^3 of radius π (that is, all points of R^3 of distance π or less from the origin). Given the above, for every point in this ball there is a rotation, with axis through the point and the origin, and rotation angle equal to the distance of the point from the origin. The identity rotation corresponds to the point at the center of the ball. Rotation through an angle 𝜃 between 0 and π (not including either) are on the same axis at the same distance. Rotation through angles between 0 and −π correspond to the point on the same axis and distance from the origin but on the opposite side of the origin. The one remaining issue is that the two rotations through π and through −π are the same. So we identify (or "glue together") antipodal points on the surface of the ball. After this identification, we arrive at a topological space homeomorphic to the rotation group.

It seems to me that when we assign coordinates to this space (I was thinking of using the Euler angles, but actually there's no need to be so specific), the resulting space should have a metric, the "distance" between points being the amount one has to rotate to get from one "point" to another.

I was wondering if anyone has written a metric for this space (there should be more than one, I'm interested in any such realization), and whether it would be Riemannian or pseudo-Riemanian. There is also the possibility that my intuition that such a metric exists is incorrect, proof that it does not exist would also be interesting.
 
Physics news on Phys.org
pervect said:
when we assign coordinates to this space (I was thinking of using the Euler angles, but actually there's no need to be so specific), the resulting space should have a metric
I don't think this is true in general; assigning coordinates means it's a manifold, but a manifold does not have to have a metric.
 
pervect said:
I was wondering if anyone has written a metric for this space (there should be more than one, I'm interested in any such realization), and whether it would be Riemannian or pseudo-Riemanian. There is also the possibility that my intuition that such a metric exists is incorrect, proof that it does not exist would also be interesting.
This paper might be germane: Metrics for 3D Rotations: Comparison and Analysis.
 
  • Like
Likes Filip Larsen
There is the concept of the Haar measure, but that relates to a group invariant volume form, not necessarily to a metric tensor. I am unsure whether similar arguments can be used to construct a metric tensor (i.e., a positive definite symmetric bilinear map on the Lie algebra so(3)). I have not seen such a construction, but that does not mean it doesn't exist.

Edit: Search and thou shalt find https://en.wikipedia.org/wiki/Killing_form
 
Thread 'Can this experiment break Lorentz symmetry?'
1. The Big Idea: According to Einstein’s relativity, all motion is relative. You can’t tell if you’re moving at a constant velocity without looking outside. But what if there is a universal “rest frame” (like the old idea of the “ether”)? This experiment tries to find out by looking for tiny, directional differences in how objects move inside a sealed box. 2. How It Works: The Two-Stage Process Imagine a perfectly isolated spacecraft (our lab) moving through space at some unknown speed V...
Does the speed of light change in a gravitational field depending on whether the direction of travel is parallel to the field, or perpendicular to the field? And is it the same in both directions at each orientation? This question could be answered experimentally to some degree of accuracy. Experiment design: Place two identical clocks A and B on the circumference of a wheel at opposite ends of the diameter of length L. The wheel is positioned upright, i.e., perpendicular to the ground...
According to the General Theory of Relativity, time does not pass on a black hole, which means that processes they don't work either. As the object becomes heavier, the speed of matter falling on it for an observer on Earth will first increase, and then slow down, due to the effect of time dilation. And then it will stop altogether. As a result, we will not get a black hole, since the critical mass will not be reached. Although the object will continue to attract matter, it will not be a...
Back
Top