Minimizers of an Energy Functional

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Energy Functional
Click For Summary
SUMMARY

The discussion establishes that any real-valued function ##u## of class ##C^2(\overline{U})##, satisfying the conditions ##\Delta u = \phi## in the bounded open subset ##U## of ##\mathbb{R}^n## and ##u|_{\partial U} = 0##, serves as a minimizer of the energy functional $$\mathscr{E}(u) = \int_U d^n x\, \left(\frac{1}{2}|\nabla u(x)|^2 + \phi(x) u(x)\right)$$. The proof relies on variational methods and properties of Sobolev spaces. This result is significant in the context of calculus of variations and partial differential equations.

PREREQUISITES
  • Understanding of Sobolev spaces and their properties
  • Familiarity with variational calculus techniques
  • Knowledge of partial differential equations, specifically the Laplace operator
  • Proficiency in the concepts of energy functionals and minimization principles
NEXT STEPS
  • Study the properties of Sobolev spaces, particularly ##W^{2,2}(U)##
  • Learn about variational methods in calculus of variations
  • Explore the theory of partial differential equations, focusing on elliptic equations
  • Investigate applications of energy functionals in physics and engineering
USEFUL FOR

Mathematicians, physicists, and engineers interested in optimization problems, variational principles, and the analysis of partial differential equations.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##U## be a bounded open subset of ##\mathbb{R}^n##. Given a continuous function ##\phi : \overline{U} \to \mathbb{R}##, show that any real-valued function ##u## of class ##C^2(\overline{U})## such that ##\Delta u = \phi## in ##U## and ##u|_{\partial U} = 0## is a minimizer of the energy functional $$\mathscr{E}(u) = \int_U d^n x\, \left(\frac{1}{2}|\nabla u(x)|^2 + \phi(x) u(x)\right)$$ over the class of functions ##\Sigma = \{v\in C^2(\overline{U}) : v|_{\partial U} = 0\}##.
 
  • Like
Likes   Reactions: jbergman and topsquark
Physics news on Phys.org
First, as

$$
\Delta u(x) = \phi (x)
$$

we have

$$
0 = \int_U d^nx \left( - \Delta u(x) + \phi (x) \right) \eta (x)
$$

for an arbitrary function ##\eta (x)##. If we take ##\eta \in \Sigma##, integrating by parts gives

$$
0 = \int_U d^nx \left( \nabla u(x) \cdot \nabla \eta (x)+ \phi (x) \eta (x) \right)
$$

Take an arbitrary ##v \in \Sigma##. We can write down an obvious inequality

$$
0 \leq \left( \| \nabla u \| - \| \nabla v \| \right)^2
$$

where ##\| \nabla u \| := \left( \sum_{i=1}^n (\partial_i u)^2 \right)^{1/2}## (##\| \nabla u \|^2 \equiv | \nabla u |^2##). Which implies

$$
0 \leq \frac{1}{2} | \nabla u |^2 + \frac{1}{2} | \nabla v |^2 - \| \nabla u \| \| \nabla v \|
$$

or

$$
\| \nabla u \| \| \nabla v \| \leq \frac{1}{2} | \nabla u |^2 + \frac{1}{2} | \nabla v |^2 .
$$

As ##\nabla u \cdot \nabla v \leq | \nabla u \cdot \nabla v | \leq \| \nabla u \| \| \nabla v \|## (Cauchy-Schwarz) we have

$$
\nabla u \cdot \nabla v \leq \frac{1}{2} | \nabla u |^2 + \frac{1}{2} | \nabla v |^2 .
$$

From which we have

$$
\int_U d^nx \left( \nabla u \cdot \nabla v + \phi v - \frac{1}{2} | \nabla u |^2 \right) \leq \int_U d^nx \left( \frac{1}{2} | \nabla v |^2 + \phi v \right)
$$

Using ##\int_U d^nx \left( \nabla u \cdot \nabla \eta+ \phi \eta \right) = 0## in this integral gives

\begin{align*}
\int_U d^nx \left( \nabla u \cdot \nabla [\eta + v] + \phi [\eta + v] - \frac{1}{2} | \nabla u |^2 \right)
\leq \int_U d^nx \left( \frac{1}{2} | \nabla v |^2 + \phi v \right)
\end{align*}

Putting ##\eta (x) = u(x) - v(x)## we have,

$$
\int_U d^nx \left( \frac{1}{2} | \nabla u (x) |^2 + \phi (x) u (x) \right) \leq \int_U d^nx \left( \frac{1}{2} | \nabla v (x) |^2 + \phi (x) v (x) \right)
$$

which is the desired result. Obviously, this choice of ##\eta (x)## means that ##\eta \in \Sigma##.
 
Last edited:
  • Like
Likes   Reactions: Office_Shredder and jbergman

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
664
  • · Replies 0 ·
Replies
0
Views
486
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
440