POTW Minimizers of an Energy Functional

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##U## be a bounded open subset of ##\mathbb{R}^n##. Given a continuous function ##\phi : \overline{U} \to \mathbb{R}##, show that any real-valued function ##u## of class ##C^2(\overline{U})## such that ##\Delta u = \phi## in ##U## and ##u|_{\partial U} = 0## is a minimizer of the energy functional $$\mathscr{E}(u) = \int_U d^n x\, \left(\frac{1}{2}|\nabla u(x)|^2 + \phi(x) u(x)\right)$$ over the class of functions ##\Sigma = \{v\in C^2(\overline{U}) : v|_{\partial U} = 0\}##.
 
  • Like
Likes jbergman and topsquark
Physics news on Phys.org
First, as

$$
\Delta u(x) = \phi (x)
$$

we have

$$
0 = \int_U d^nx \left( - \Delta u(x) + \phi (x) \right) \eta (x)
$$

for an arbitrary function ##\eta (x)##. If we take ##\eta \in \Sigma##, integrating by parts gives

$$
0 = \int_U d^nx \left( \nabla u(x) \cdot \nabla \eta (x)+ \phi (x) \eta (x) \right)
$$

Take an arbitrary ##v \in \Sigma##. We can write down an obvious inequality

$$
0 \leq \left( \| \nabla u \| - \| \nabla v \| \right)^2
$$

where ##\| \nabla u \| := \left( \sum_{i=1}^n (\partial_i u)^2 \right)^{1/2}## (##\| \nabla u \|^2 \equiv | \nabla u |^2##). Which implies

$$
0 \leq \frac{1}{2} | \nabla u |^2 + \frac{1}{2} | \nabla v |^2 - \| \nabla u \| \| \nabla v \|
$$

or

$$
\| \nabla u \| \| \nabla v \| \leq \frac{1}{2} | \nabla u |^2 + \frac{1}{2} | \nabla v |^2 .
$$

As ##\nabla u \cdot \nabla v \leq | \nabla u \cdot \nabla v | \leq \| \nabla u \| \| \nabla v \|## (Cauchy-Schwarz) we have

$$
\nabla u \cdot \nabla v \leq \frac{1}{2} | \nabla u |^2 + \frac{1}{2} | \nabla v |^2 .
$$

From which we have

$$
\int_U d^nx \left( \nabla u \cdot \nabla v + \phi v - \frac{1}{2} | \nabla u |^2 \right) \leq \int_U d^nx \left( \frac{1}{2} | \nabla v |^2 + \phi v \right)
$$

Using ##\int_U d^nx \left( \nabla u \cdot \nabla \eta+ \phi \eta \right) = 0## in this integral gives

\begin{align*}
\int_U d^nx \left( \nabla u \cdot \nabla [\eta + v] + \phi [\eta + v] - \frac{1}{2} | \nabla u |^2 \right)
\leq \int_U d^nx \left( \frac{1}{2} | \nabla v |^2 + \phi v \right)
\end{align*}

Putting ##\eta (x) = u(x) - v(x)## we have,

$$
\int_U d^nx \left( \frac{1}{2} | \nabla u (x) |^2 + \phi (x) u (x) \right) \leq \int_U d^nx \left( \frac{1}{2} | \nabla v (x) |^2 + \phi (x) v (x) \right)
$$

which is the desired result. Obviously, this choice of ##\eta (x)## means that ##\eta \in \Sigma##.
 
Last edited:
  • Like
Likes Office_Shredder and jbergman

Similar threads

Replies
3
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
Replies
1
Views
2K
Replies
4
Views
2K
Replies
8
Views
243
Back
Top