Minimum wavelength of phonons under the Debye aproximation

Click For Summary
SUMMARY

The discussion focuses on calculating the minimum phonon wavelength under the Debye approximation for a monoatomic cubic lattice with a lattice constant of 3.7 Å and a sound speed of 3000 m/s. The calculated Debye frequency is 3.2·1013 rad/s, leading to a wavelength of 4.27 Å, which is derived from the formula λ = v/f. Participants highlight that the minimum wavelength should be 2a due to the Nyquist theorem, suggesting that the example may illustrate the limitations of the Debye approximation.

PREREQUISITES
  • Understanding of Debye approximation in solid-state physics
  • Knowledge of cubic lattice structures and their properties
  • Familiarity with phonon concepts and sound speed calculations
  • Ability to apply the Nyquist theorem in wave mechanics
NEXT STEPS
  • Study the derivation of Debye frequency and its implications in solid-state physics
  • Learn about the Nyquist theorem and its application to phonon wavelengths
  • Explore the relationship between lattice parameters and phonon dispersion
  • Investigate the limitations of the Debye approximation in various materials
USEFUL FOR

Students and researchers in solid-state physics, materials science, and anyone involved in phonon analysis and lattice dynamics.

AngelFis93
Messages
2
Reaction score
0
Homework Statement
It's stated on an example problem that under Debye aproximation on a monoatomic cubic lattice of lattice constant a= 3.7 Å, sound speed v=3000 m/s (in both longitudinal and transverse directions) and Debye frequency ω=3.2·10^(13) rad/s, to find the minimum phonon wavelength. They give you the solution λ=4.27 Å .
Relevant Equations
λ=v/f
Since in Debye aproximation Debye's frecuency is defined as the maximum frecueny , the corresponding wavelength should be the minimum one, due to the inverse relation among those

λ=v/f=v·2π/ω=5.9 Å , which is higher than the given result.

I believe I should be using the information 'cubic lattice' somehow ,but can't see it.Thanks.
 
Last edited:
Physics news on Phys.org
It a bit strange.
Problem is over-defined. You do not need Debye frequency here because it is calculable from lattice parameter and sound speed. Actually as i calculate Debye approximation using equation
ω/(2*pi)=(Cs/2a)*[(9/(4*pi))^(1/3)]
, ω for 3.7 Å lattice should be 2.277*10^13
Higher value of 3.2*10^13 will actually give wavelength 4.19 Å.
 
Last edited:
AngelFis93 said:
Homework Statement:: It's stated on an example problem that under Debye aproximation on a monoatomic cubic lattice of lattice constant a= 3.7 Å, sound speed v=3000 m/s (in both longitudinal and transverse directions) and Debye frequency ω=3.2·10^(13) rad/s, to find the minimum phonon wavelength. They give you the solution λ=4.27 Å .
Homework Equations:: λ=v/f

Since in Debye aproximation Debye's frecuency is defined as the maximum frecueny , the corresponding wavelength should be the minimum one, due to the inverse relation among those

λ=v/f=v·2π/ω=5.9 Å , which is higher than the given result.

I believe I should be using the information 'cubic lattice' somehow ,but can't see it.Thanks.
Is the intention of the example to show you where the Debye approximation breaks down? Because, the minimum wavelength is actually ##2a## because of the Nyquist theorem (https://en.wikipedia.org/wiki/Phonon#Lattice_waves).

You should try to take the value of ##2a## and divide by the factor you get from taking the body diagonal of a cube. You will get the answer you posted, which to me seems wrong.
 
Dr_Nate said:
Is the intention of the example to show you where the Debye approximation breaks down?
I don't think so, at least there isn't anything in the statement that makes me think that way.
Dr_Nate said:
You should try to take the value of 2a2a and divide by the factor you get from taking the body diagonal of a cube. You will get the answer you posted, which to me seems wrong.
I came to the same conclusion, a·2/√3 gives the exact solution, I just can't find in the theory were it's justified why it is calculated this way. A mistake in the solution could be posible aswell, so i probably ask the proffesor directly.

Thanks for the reply

trurle said:
It a bit strange.
Problem is over-defined. You do not need Debye frequency here because it is calculable from lattice parameter and sound speed. Actually as i calculate Debye approximation using equation
ω/(2*pi)=(Cs/2a)*[(9/(4*pi))^(1/3)]
, ω for 3.7 Å lattice should be 2.277*10^13
Higher value of 3.2*10^13 will actually give wavelength 4.19 Å.

I get 3.2 ·10^(13) rad/s using ω =v·k=v·a^(-1)(6π^2)^(1/3) for ω,k on Debyes aproximation (a^(-1) for being a cubic lattice, and using the definition of Debye's k).

Thanks for the reply.
 

Similar threads

  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 4 ·
Replies
4
Views
10K
  • · Replies 0 ·
Replies
0
Views
5K
  • · Replies 0 ·
Replies
0
Views
2K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 1 ·
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
5K