I Modified Bessel Equation

thatboi
Messages
130
Reaction score
20
Hey all,
I wanted to know if anyone knew somewhere I could find the asymptotic behavior for small x (i.e x approaching 0) limit of the modified Bessel equations with complex order. The wikipedia page for Bessel functions (https://en.wikipedia.org/wiki/Bessel_function#Modified_Bessel_functions:_Iα,_Kα) provides a limit when ##|z| \ll \sqrt{\alpha+1}## but in the case of complex-valued ##\alpha## I am not sure how to interpret this bound.
Any assistance would be appreciated.
 
Physics news on Phys.org
They give

##I_\alpha(z) \approx \frac{1}{\Gamma(\alpha+1)}\left(\frac{z}{2}\right)^\alpha##

just treat this as an analytic function of ##\alpha## for small z.
 
Paul Colby said:
They give

##I_\alpha(z) \approx \frac{1}{\Gamma(\alpha+1)}\left(\frac{z}{2}\right)^\alpha##

just treat this as an analytic function of ##\alpha## for small z.
For the ##K_{\alpha}## limits, it is defined for ##\alpha=0## and ##\alpha>0##, so for the case of complex ##\alpha##, does this just mean ##\alpha\neq 0##?
 
That’s the way I read it. ##z=0## is a regular singular point and ##\alpha## is just a parameter. So it should be analytic.
 
Thread 'Direction Fields and Isoclines'
I sketched the isoclines for $$ m=-1,0,1,2 $$. Since both $$ \frac{dy}{dx} $$ and $$ D_{y} \frac{dy}{dx} $$ are continuous on the square region R defined by $$ -4\leq x \leq 4, -4 \leq y \leq 4 $$ the existence and uniqueness theorem guarantees that if we pick a point in the interior that lies on an isocline there will be a unique differentiable function (solution) passing through that point. I understand that a solution exists but I unsure how to actually sketch it. For example, consider a...
Back
Top