MHB Modulos with regards to Congruence

  • Thread starter Thread starter shamieh
  • Start date Start date
AI Thread Summary
The discussion focuses on solving the congruence equation 34x ≡ 77 (mod 89), specifically the reversing part of the problem. To solve this, one must find the multiplicative inverse of 34 modulo 89, which is calculated using the extended Euclidean algorithm, yielding 34^{-1} ≡ 55 (mod 89). This inverse allows for the equation to be manipulated into the form x ≡ 77 * 55 (mod 89). The final solution is determined to be x ≡ 52 (mod 89). Understanding the process of finding the inverse is crucial for solving similar congruences effectively.
shamieh
Messages
538
Reaction score
0
Can someone explain to me what exactly is taking place on Section 4.4 Problem 6b) in the reversing part of the problem? I understand the first part - that's easy, but I have no idea what is going on in the reversing part of the problem. Thanks in advance.

Here is a link instead of me typing tediously:
The problem reads:
Solve $34x ≡ 77 (mod 89)$
http://www.cs.ucsb.edu/~omer/cs40/hw4_solutions.pdf
 
Physics news on Phys.org
shamieh said:
Can someone explain to me what exactly is taking place on Section 4.4 Problem 6b) in the reversing part of the problem? I understand the first part - that's easy, but I have no idea what is going on in the reversing part of the problem. Thanks in advance.

Here is a link instead of me typing tediously:
The problem reads:
Solve $34x ≡ 77 (mod 89)$
http://www.cs.ucsb.edu/~omer/cs40/hw4_solutions.pdf

A congruence equation of the type...

$\displaystyle n\ x \equiv m\ \text{mod}\ p\ (1)$

... is solved as follows... indicating with $n^{-1}$ the multiplicative inverse of n mod p [if it exists...], You have...

$\displaystyle n\ n^{-1} x = x \equiv m\ n^{-1}\ \text{mod}\ p\ (2)$

You can find $n^{-1}\ \text{mod}\ p$ applying, for example, the extended Euclidean algorithm [see Modular multiplicative inverse - Wikipedia, the free encyclopedia ]... in Your case is n = 34, m = 77 and p = 89, so that is $34^{-1}\ \text{mod}\ 89 = 55$ and the solution is $\displaystyle x \equiv 77 \cdot 55\ \text{mod}\ 89 = 52$ ...

Kind regards

$\chi$ $\sigma$
 
Last edited:
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.
I was reading a Bachelor thesis on Peano Arithmetic (PA). PA has the following axioms (not including the induction schema): $$\begin{align} & (A1) ~~~~ \forall x \neg (x + 1 = 0) \nonumber \\ & (A2) ~~~~ \forall xy (x + 1 =y + 1 \to x = y) \nonumber \\ & (A3) ~~~~ \forall x (x + 0 = x) \nonumber \\ & (A4) ~~~~ \forall xy (x + (y +1) = (x + y ) + 1) \nonumber \\ & (A5) ~~~~ \forall x (x \cdot 0 = 0) \nonumber \\ & (A6) ~~~~ \forall xy (x \cdot (y + 1) = (x \cdot y) + x) \nonumber...
Back
Top