I More doubts in perturbation theory

Click For Summary
The discussion centers on the challenges of applying perturbation theory in quantum mechanics, particularly when dealing with degenerate eigenstates. It highlights the difficulty in determining the correct linear combinations of unperturbed states that transition into exact eigenstates as perturbations are introduced. If the wrong combination is chosen, the resulting series expansion can yield meaningless expressions, particularly when energy differences lead to divergences. The necessity of selecting the correct basis arises specifically in perturbation theory due to its reliance on power series that cannot accommodate abrupt changes. The concept of "degenerate perturbation theory" is emphasized, which requires diagonalizing the perturbation within the set of degenerate states to ensure meaningful results.
Kashmir
Messages
466
Reaction score
74
Townsend, quantum mechanics
" In our earlier derivation we assumed that each unperturbed eigenstate ##\left|\varphi_{n}^{(0)}\right\rangle## turns smoothly into the exact eigenstate ##\left|\psi_{n}\right\rangle## as we turn on the perturbing Hamiltonian. However, if there are ##N## states
##
\left|\varphi_{n, i}^{(0)}\right\rangle \quad i=1,2, \ldots, N
## all with the same energy, it isn't clear which are the right linear combinations of the unperturbed states that become the exact eigenstates. For example, in the case of two-fold degeneracy, is it
##
\left|\varphi_{n, 1}^{(0)}\right\rangle \text { and }\left|\varphi_{n, 2}^{(0)}\right\rangle
##
or
##
\frac{1}{\sqrt{2}}\left(\left|\varphi_{n, 1}^{(0)}\right\rangle+\left|\varphi_{n, 2}^{(0)}\right\rangle\right) \quad \text { and } \frac{1}{\sqrt{2}}\left(\left|\varphi_{n, 1}^{(0)}\right\rangle-\left|\varphi_{n, 2}^{(0)}\right\rangle\right)
##
or some other of the infinite number of linear combinations that we can construct from these two states? If we choose the wrong linear combination of unperturbed states as a starting point, even the small change in the Hamiltonian generated by turning on the perturbation with an infinitesimal ##\lambda## must produce a large change in the state
1) We find the eigenstate of the total Hamiltonian using the below series ##\begin{aligned}\left|\psi_{n}\right\rangle &=\left|\varphi_{n}^{(0)}\right\rangle+\lambda\left|\varphi_{n}^{(1)}\right\rangle+\lambda^{2}\left|\varphi_{n}^{(2)}\right\rangle+\cdots \\ E_{n} &=E_{n}^{(0)}+\lambda E_{n}^{(1)}+\lambda^{2} E_{n}^{(2)}+\cdots \end{aligned}## What happens if I use the above series expansion for the wrong states? 2) Is it that the states which change abruptly aren't "the exact eigenstates" of the total perturbed Hamilton ?
 
Physics news on Phys.org
1) You end up with meaningless expressions since the ##(E_1 - E_2)^{-1}## factors diverge.
2) No, the necessity to choose the "right" basis only arises in perturbation theory because we're looking for a power series in terms of ##\lambda## which cannot approximate jump-discontinuities.
 
  • Like
Likes Kashmir
HomogenousCow said:
1) You end up with meaningless expressions since the ##(E_1 - E_2)^{-1}## factors diverge.
2) No, the necessity to choose the "right" basis only arises in perturbation theory because we're looking for a power series in terms of ##\lambda## which cannot approximate jump-discontinuities.
So it is not possible to write the series expansion using"wrong" states ?
 
This case is known as "degenerate perturbation theory" and is discussed in any textbook. Specifically, you first have to diagonalize the perturbation V in the set of degenerate zeroth order states.
 
  • Like
Likes vanhees71
DrDu said:
This case is known as "degenerate perturbation theory" and is discussed in any textbook. Specifically, you first have to diagonalize the perturbation V in the set of degenerate zeroth order states.
I'm having confusion reading my textbook 'McIntyre'
 
So try to find another book which fits your way of thinking better :-)
 
  • Like
Likes Kashmir
I like the treatment in Sakurai, Modern Quantum Mechanics.
 
Kashmir said:
So it is not possible to write the series expansion using"wrong" states ?
Anyone??
 
Maybe you can think of it like this. This degeneracy can be lifted in several ways. For example, in a spin 1/2 problem, you can add either a sigma_z or a sigma_x term to lift the degeneracy. Assume you take the degenerate case as the limit of a small sigma_z potential tending to 0. Now if you add a sigma_x potential as a real perturbation, the convergence of the series will break down as soon as the term containing sigma_x becomes larger than the term containing sigma_z. In the limit of vanishing sigma_z, the perturbation series will not converge at all.
 

Similar threads

Replies
3
Views
1K
Replies
4
Views
1K
Replies
1
Views
596
Replies
3
Views
1K
Replies
6
Views
2K
Replies
14
Views
2K