MHB Motion Problem Using F=Ma and s=ut+1/2xt^2

  • Thread starter Thread starter jakan
  • Start date Start date
  • Tags Tags
    F=ma Motion
AI Thread Summary
The discussion centers on solving a motion problem involving a package dropped from an aircraft. The package, weighing 10 kg, is released from a height of 200 m while the aircraft travels at a speed of 150 m/s. It experiences a downward acceleration of 4 m/s² and a horizontal acceleration of -3 m/s². To find the horizontal distance for release, the time of fall is calculated using the vertical motion equation, and then this time is used in the horizontal motion equation. The impact force is not directly needed for the problem, but the discussion acknowledges the original query about it.
jakan
Messages
1
Reaction score
0
Firstly, appologies if this is in the wrong place or wrote wrong, total noobie here.

Ive been given some examples of math questions based on aviation, unfortunately this one didn't come with the correct answer or any example working and it seems a little more tricky than the others so I am struggling with where to start and knowing if I am getting decent answers. (Its for an oral examination with a maths element, don't worry the scenaria and numbers I get will be completely unknown to me):

A aircraft is conducting a low-level training supply drop run with the intention of dropping a 10kg package on a target location. The aircraft is at a constant speed of 150ms^-1 at an altitute of 200m.

At package release, the package is subject to a constant acceleration in a downward vertical direction of 4ms^-2 and in the horizontal direction of -3ms^-2 (ie against direction of travel).

At what horizontal distance from target should the package be released and what will the impact force be?

Equations given are F=ma and s=ut+1/2xt^2

Any help or pointing in right direction will be appreciated, other examples used other motion equations I had no issue with.
 
Mathematics news on Phys.org
jakan said:
Firstly, appologies if this is in the wrong place or wrote wrong, total noobie here.

Ive been given some examples of math questions based on aviation, unfortunately this one didn't come with the correct answer or any example working and it seems a little more tricky than the others so I am struggling with where to start and knowing if I am getting decent answers. (Its for an oral examination with a maths element, don't worry the scenaria and numbers I get will be completely unknown to me):

A aircraft is conducting a low-level training supply drop run with the intention of dropping a 10kg package on a target location. The aircraft is at a constant speed of 150ms^-1 at an altitute of 200m.

At package release, the package is subject to a constant acceleration in a downward vertical direction of 4ms^-2 and in the horizontal direction of -3ms^-2 (ie against direction of travel).

At what horizontal distance from target should the package be released and what will the impact force be?

Equations given are F=ma and s=ut+1/2xt^2

Any help or pointing in right direction will be appreciated, other examples used other motion equations I had no issue with.

Your equation s=ut+1/2xt^2 does not seem to be correct it is usually written s=ut+1/2at^2 where a is the acceleration.

you find t by looking at the motion vertically and then s using the value of t you have found in the horizontal equation
 
You don't really need "F= ma" since you are not given or asked about the force. You are given the vertical and horizontal accelerations so you need s= ut+ (1/2)at^2. The package has a downward acceleration of 4 m/s^2 and must fall 200 m. u is the initial speed but there was no initial downward speed so u= 0. So for the vertical motion (1/2)(4)t^2= 2t^2= 200. Solve that for t. (Notice that the acceleration is not negative because I am taking "downward" to be positive.)

You are told that the horizontal acceleration is -3 m/s^2. The initial horizontal speed is 150 m/s so the horizontal distance is given by d= 150t- 3t^2. Use the t determined above to find the distance the package will move horizontally while falling.
 
HallsofIvy said:
You don't really need "F= ma" since you are not given or asked about the force. You are given the vertical and horizontal accelerations so you need s= ut+ (1/2)at^2. The package has a downward acceleration of 4 m/s^2 and must fall 200 m. u is the initial speed but there was no initial downward speed so u= 0. So for the vertical motion (1/2)(4)t^2= 2t^2= 200. Solve that for t. (Notice that the acceleration is not negative because I am taking "downward" to be positive.)

You are told that the horizontal acceleration is -3 m/s^2. The initial horizontal speed is 150 m/s so the horizontal distance is given by d= 150t- 3t^2. Use the t determined above to find the distance the package will move horizontally while falling.

Well, to be fair, the OP did ask about the impact force in the latter part of their sentence.
 
Ah, thanks.
 
Seemingly by some mathematical coincidence, a hexagon of sides 2,2,7,7, 11, and 11 can be inscribed in a circle of radius 7. The other day I saw a math problem on line, which they said came from a Polish Olympiad, where you compute the length x of the 3rd side which is the same as the radius, so that the sides of length 2,x, and 11 are inscribed on the arc of a semi-circle. The law of cosines applied twice gives the answer for x of exactly 7, but the arithmetic is so complex that the...
Is it possible to arrange six pencils such that each one touches the other five? If so, how? This is an adaption of a Martin Gardner puzzle only I changed it from cigarettes to pencils and left out the clues because PF folks don’t need clues. From the book “My Best Mathematical and Logic Puzzles”. Dover, 1994.
Back
Top