Moving the graph to the right -- What do you think?

  • Thread starter Thread starter 0kelvin
  • Start date Start date
  • Tags Tags
    Graph
0kelvin
Messages
50
Reaction score
5
I'm studying calculus alone with textbooks. The part about moving the graphs to the right or to the left struck me because they just have a list of rules, properties and make you relate the graph with the corresponding equation. I know what is the rate of change and I thought I could do better than the textbook.

I vectorized this to explain why: f(x - n) moves the parabola to the right.

func_sideways.png

Not satisfied I though. f(x - 2) does remind me of the concept of a composite function. Can I draw something to explain this and relate it to the rate of change?

translation2.png
 
  • Like
Likes mcastillo356
Mathematics news on Phys.org
With a graph described with an equation ##f(x,y)=0## given, another graph
f(x-a,y-b)=0
is a translation of that graph with vector (a,b) on x-y plane. For an example say (0,0) is on the original graph, it is translated to (a,b) on the new one.
 
Last edited:
0kelvin said:
I'm studying calculus alone with textbooks. The part about moving the graphs to the right or to the left struck me because they just have a list of rules, properties and make you relate the graph with the corresponding equation. I know what is the rate of change and I thought I could do better than the textbook.
Take a function that is zero everywhere except the origin:$$f(x)=\begin{cases} 1 & x = 0 \\ 0 & x \ne 0 \end{cases}$$Now define ##g(x) = f(x -2)##. Note that ##g(2) = f(0) = 1##, hence:$$g(x)=\begin{cases} 1 & x = 2 \\ 0 & x \ne 2 \end{cases}$$And we see that ##g(x)## is ##f(x)## moved to the right.
 
  • Like
Likes mcastillo356
Here's a related example from physics: a traveling wave disturbance on a string.

Suppose a disturbance has a profile F(x) along a string.
[In physicist's notation...]
F(x-vt) describes that disturbance translating (traveling without distortion) to the right with constant velocity v.

At t=0, consider the disturbance at the string location x=1: F(1).
After a time t, F(1)=F(x-vt) where 1=x-vt.
Since t increases, x must increase to keep x-vt=1. (Indeed, x=vt+1.)
...and similarly for other locations.
Thus, the disturbance moves to the right.

See https://www.desmos.com/calculator/bjt6dleg5h
from
https://www.physicsforums.com/threa...mean-in-the-wave-equation.836348/post-5254546
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top