Moving the graph to the right -- What do you think?

  • Thread starter Thread starter 0kelvin
  • Start date Start date
  • Tags Tags
    Graph
AI Thread Summary
The discussion focuses on the concept of graph translation in calculus, particularly how moving a function to the right or left is represented mathematically. The user explores the implications of the transformation f(x - n) and relates it to composite functions, emphasizing the connection between graph equations and their translations on the x-y plane. An example is provided using a piecewise function to illustrate how the transformation affects the function's output. Additionally, a physics analogy is drawn with wave disturbances, demonstrating how a function can represent a traveling wave. Overall, the discussion seeks to deepen the understanding of graph translations beyond standard textbook explanations.
0kelvin
Messages
50
Reaction score
5
I'm studying calculus alone with textbooks. The part about moving the graphs to the right or to the left struck me because they just have a list of rules, properties and make you relate the graph with the corresponding equation. I know what is the rate of change and I thought I could do better than the textbook.

I vectorized this to explain why: f(x - n) moves the parabola to the right.

func_sideways.png

Not satisfied I though. f(x - 2) does remind me of the concept of a composite function. Can I draw something to explain this and relate it to the rate of change?

translation2.png
 
  • Like
Likes mcastillo356
Mathematics news on Phys.org
With a graph described with an equation ##f(x,y)=0## given, another graph
f(x-a,y-b)=0
is a translation of that graph with vector (a,b) on x-y plane. For an example say (0,0) is on the original graph, it is translated to (a,b) on the new one.
 
Last edited:
0kelvin said:
I'm studying calculus alone with textbooks. The part about moving the graphs to the right or to the left struck me because they just have a list of rules, properties and make you relate the graph with the corresponding equation. I know what is the rate of change and I thought I could do better than the textbook.
Take a function that is zero everywhere except the origin:$$f(x)=\begin{cases} 1 & x = 0 \\ 0 & x \ne 0 \end{cases}$$Now define ##g(x) = f(x -2)##. Note that ##g(2) = f(0) = 1##, hence:$$g(x)=\begin{cases} 1 & x = 2 \\ 0 & x \ne 2 \end{cases}$$And we see that ##g(x)## is ##f(x)## moved to the right.
 
  • Like
Likes mcastillo356
Here's a related example from physics: a traveling wave disturbance on a string.

Suppose a disturbance has a profile F(x) along a string.
[In physicist's notation...]
F(x-vt) describes that disturbance translating (traveling without distortion) to the right with constant velocity v.

At t=0, consider the disturbance at the string location x=1: F(1).
After a time t, F(1)=F(x-vt) where 1=x-vt.
Since t increases, x must increase to keep x-vt=1. (Indeed, x=vt+1.)
...and similarly for other locations.
Thus, the disturbance moves to the right.

See https://www.desmos.com/calculator/bjt6dleg5h
from
https://www.physicsforums.com/threa...mean-in-the-wave-equation.836348/post-5254546
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top