MHB Mr.Ask's question at Yahoo Answers (curvature)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Curvature
AI Thread Summary
The discussion centers on finding the curvature of the curve defined by r(t) = t^2 i + ln(t) j + t ln(t) k at the point (1,0,0). The first derivative of the curve at t=1 is calculated as (2,1,1), and the second derivative is (2,-1,1). Using the curvature formula, the cross product of the derivatives is computed to find the curvature at the specified point. The calculation involves determining the magnitudes of the vectors involved. The final curvature value is derived from these computations.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

find the curvature of the curve r(t)= t^2 i + ln(t) j + t ln(t) K at the point (1,0,0)

Here is a link to the question:

Find the curvature of the curve? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Mr.Ask,

We have: $$\begin{aligned}&\vec{r}(t)=(t^2,\log t,t\log t)\Rightarrow\vec{r}(1)=(1,0,0)\\&\frac{d\vec{r}}{dt}=\left(2t,\dfrac{1}{t},1+\log t\right)\Rightarrow\frac{d\vec{r}}{dt}(1)=\left(2,1,1\right)\\&\frac{d^2\vec{r}}{dt^2}=\left(2,-\dfrac{1}{t^2},\dfrac{1}{t}\right)\Rightarrow \frac{d^2\vec{r}}{dt^2}(1)=\left(2,-1,1\right)&\end{aligned}$$ Using a well-known formula, the curvature at $(1,0,0)$ is: $$\kappa (1)=\dfrac{\left |\dfrac{d\vec{r}}{dt}(1)\times \dfrac{d^2\vec{r}}{dt^2}(1)\right |}{\left |\dfrac{d\vec{r}}{dt}(1)\right |^3}=\dfrac{\left |(2,1,1)\times (2,-1,1)\right |}{\left |(2,-1,1)\right |^3}=\ldots $$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top