Rijad Hadzic
- 321
- 20
Homework Statement
Determine the characteristic polynomials, eigenvalues, and corresponding eigenspaces of the given 2x2 matricies
Homework Equations
The Attempt at a Solution
<br /> <br /> \begin{pmatrix}<br /> 5 & 2\\<br /> -8 & -3 \\<br /> \end{pmatrix}<br />
thus
<br /> <br /> \begin{pmatrix}<br /> 5-\lambda & 2\\<br /> -8 & -3-\lambda \\<br /> \end{pmatrix}<br />
determinant is = to: \lambda^2 -2\lambda + 1
which gives value lambda = 1
plugging into <br /> <br /> \begin{pmatrix}<br /> 5-\lambda & 2\\<br /> -8 & -3-\lambda \\<br /> \end{pmatrix}<br />
you get<br /> <br /> \begin{pmatrix}<br /> 4 & 2\\<br /> -8 & -4 \\<br /> \end{pmatrix}<br />
using rref you get<br /> <br /> \begin{pmatrix}<br /> 1 & .5\\<br /> 0 & 0\\<br /> \end{pmatrix}<br />
setting x2 = r, I get eigenspace r*<br /> <br /> \begin{pmatrix}<br /> -1/2\\<br /> 1 \\<br /> \end{pmatrix}<br />
but my book is telling me the anser is r*<br /> <br /> \begin{pmatrix}<br /> 1\\<br /> -2 \\<br /> \end{pmatrix}<br />
our answers are the same thing right?