MHB Natural and forced response of a differential equation

marcadams267
Messages
19
Reaction score
1
Greetings everyone, I am a bit new to differential equations and I am trying to solve for the natural and forced response of this equation:

dx/dt+4x=2sin(3t) ; x(0)=0

Now I know that for the natural response I set the right side of the equation equal to 0, so I get
dx/dt+4x=0, thus the characteristic equation is m+4=0 and I get -4 as the root and the solution to the natural response is Ae^-4t and since x(0)=0, A must be 0.
So the natural response is just 0.

However, I am not sure about how to get the forced response, which is when the right side of the equation is not set to 0. Any help is appreciated, thank you.
 
Physics news on Phys.org
You have correctly found that the general solution to the "associated homogeneous equation" is $x(t)= Ae^{-4t}$. Now you need to find a single solution to the entire equation. The simplest method for getting a solution to the entire equation is "Undetermined Coefficients". Since the "non-homogeneous part" is $2sin(3x)$, "try" a solution of the form $x= Acos(3t)+ Bsin(3t)$. Then $dx/dt= -3Asin(3t)+ 3Bcos(3t)$ and the equation becomes $dx/dt+ 4x= -3Asin(3t)+ 3Bcos(3t)+ 4Acos(3t)+ 4Bsin(3t)= (3B+ 4A)cos(3t)+ (-3A+ 4B)sin(3t)= 2sin(3t)+ 0cos(3t)$ so we must have 3B+ 4A= 0 and -3A+ 4B= 2. Solve those two equations for A and B.

Multiply the first equation by 3: 9B+ 12A= 0. Multiply the second equation by 4: -12A+ 16B= 8. Adding those eliminates A: 7B= 2 so B= 2/7. Then 3B+ 4A= 6/7+ 4A= 0 so 4A= -6/7, A= -3/14. The general solution to the entire equation is $x(t)= Ae^{-4t}- (3/14) cos(3t)+ (2/7) sin(3t)$. NOW apply the "initial condition". x(0)=
A- 3/14= 0 so A= 3/14. The solution is $x(t)= (3/14)e^{-4t}- (3/14) cos(3t)+ (2/7) sin(3t)$.
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top