MHB Natural Numbers ⊆/⊄ Rationals: Infinite & Uncountable Sets

KOO
Messages
19
Reaction score
0
Question 1) Write ⊆ or ⊄:

{x/(x+1) : x∈N} ________ QNOTE:
⊆ means SUBSET
⊄ means NOT A SUBSET
∈ means ELEMENT
N means Natural Numbers
Q means Rational Numbers

Question 2)
Which of the following sets are infinite and uncountable?
R - Q
{n∈N: gcd(n,15) = 3}
(-2,2)
N*N
{1,2,9,16,...} i.e the set of perfect squares
 
Last edited:
Physics news on Phys.org
KOO said:
Question 1) Write ⊆ or ⊄:

{x/(x+1) : x∈N} ________ QNOTE:
⊆ means SUBSET
⊄ means NOT A SUBSET
∈ means ELEMENT
N means Natural Numbers
Q means Rational Numbers

Question 2)
Which of the following sets are infinite and uncountable?
R - Q
{n∈N: gcd(n,15) = 3}
(-2,2)
N*N
{1,2,9,16,...} i.e the set of perfect squares
1) Is x/(x + 1), when x is a natural number, a rational number?

2) Is R countable? Is Q countable?

-Dan
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top