NEED PHYSICS HELP am i doing this correctly?

  • Thread starter terryW16
  • Start date
  • Tags
    Physics
In summary: So the top part is how i wrote it down in my notebook and the bottom part is what i wrote on here in the forum. So the bottom part is what i wrote down after i solved it. That's great! Just a small mix up with the acceleration in part (d), but you caught it and corrected it. Keep up the good work!
  • #1
terryW16
4
0
Once again the determined coyote is out to get the road runner. He has a new pair of power skates that provide a constant acceleration of 6.0 m/s^2 along the flat top of the mesa he starts off from rest 48.0 m from teh edge of a cliff just as the road runner zips past towards the cliff at constant speed. a) calculate how long it takes the coyote to reach the edge of the cliff. b) what is his speed as he gets there? c) calculate the minimum constant speed of the road runner in order to escape the clutches of the coyote. d) calculate how far from the cliffs edge the coyote lands in the canyon 78.4 m below. His power skates do not provide acceleration when he is air borne. e) what is his velocity on the cactus laden canyon base when he lands there?

Homework Statement





Homework Equations





a) Calculate how long it takes the coyote to reach the edge of the cliff.
V= V0 + at
24.0 m/s= 0 + (6.0 m/s²)t
t= 4.0sec

b) What is his speed just as he gets there?
V²= V0² + 2as
V²= 0 + 2(6.0 m/s²)(48.0m)
V²= 576 m²/s²
V= √576 m/s
V= 24.0 m/s

c) Calculate the minimum constant speed of the roadrunner in order to escape the clutches of the coyote.
Min Speed = 48.0 m/ 4.0 s = 12.0 m/s

d) Calculate how far from the cliff’s edge the coyote lands in the canyon 78.4 m below. His power skates do not provide acceleration when he is air-borne.
Y= y0 + Vy0(t) + (1/2)ay(t)²
Y= y0 + Vy0(t) – (1/2)g(t)²
0= 78.4 m + 0 – (1/2)(9.8 m/s²)t²
0= 78.4 + 0 – 4.9t²
4.9t²= 78.4
t²= 16
t= √16
t= 4.0sec

x= x0 + vx0(t) + (1/2)ax(t)²
x= 0 +(24.0 m/s)(4.0s)+(1/2)(6.0 m/s²)(4.0s)²
x= 144 m







e) What is his velocity on the cactus laden canyon base when he lands there?
Vx= Vx0 + ax(t)
Vx= (24.0 m/s) + (6.0 m/s²)(4.0s)
Vx= 48.0 m/s

Vy= Vy0 + ay(t)
Vy= Vy0 – g(t)
Vy= 0 – (9.8 m/s²)(4.0s)
Vy= -39.2 m/s

V=(vx² +vy²)^1/2 = (48)² + (39.2)²)^1/2 = 61.972 m/s

The Attempt at a Solution

 
Physics news on Phys.org
  • #2
All correct except the (1/2)(6.0 m/s²)(4.0s)² in part (d) should be omitted because "His power skates do not provide acceleration when he is air borne."
Jolly good work!
 
  • #3
terryW16 said:
...

Homework Equations


a) Calculate how long it takes the coyote to reach the edge of the cliff.
V= V0 + at
24.0 m/s= 0 + (6.0 m/s²)t
t= 4.0sec
This is the time it takes the coyote to go 24 m/s starting from rest. Why would that be the time to the cliff?

b) What is his speed just as he gets there?
V²= V0² + 2as
V²= 0 + 2(6.0 m/s²)(48.0m)
V²= 576 m²/s²
V= √576 m/s
V= 24.0 m/s
If you do this step before doing part (a), then your answer to part (a) makes sense.
c) Calculate the minimum constant speed of the roadrunner in order to escape the clutches of the coyote.
Min Speed = 48.0 m/ 4.0 s = 12.0 m/s
This looks good.

d) Calculate how far from the cliff’s edge the coyote lands in the canyon 78.4 m below. His power skates do not provide acceleration when he is air-borne.
Y= y0 + Vy0(t) + (1/2)ay(t)²
Y= y0 + Vy0(t) – (1/2)g(t)²
0= 78.4 m + 0 – (1/2)(9.8 m/s²)t²
0= 78.4 + 0 – 4.9t²
4.9t²= 78.4
t²= 16
t= √16
t= 4.0sec
The above is correct for the time to reach the canyon floor.
x= x0 + vx0(t) + (1/2)ax(t)²
x= 0 +(24.0 m/s)(4.0s)+(1/2)(6.0 m/s²)(4.0s)²
x= 144 m
Why use an acceleration of 6.0 m/s2 ??

e) What is his velocity on the cactus laden canyon base when he lands there?
Vx= Vx0 + ax(t)
Vx= (24.0 m/s) + (6.0 m/s²)(4.0s)
Vx= 48.0 m/s
This is also incorrect.

Vy= Vy0 + ay(t)
Vy= Vy0 – g(t)
Vy= 0 – (9.8 m/s²)(4.0s)
Vy= -39.2 m/s
vy looks good.

V=(vx² +vy²)^1/2 = (48)² + (39.2)²)^1/2 = 61.972 m/s
The method here looks good, but vx was incorrect.
See comments above.
 
  • #4
It IS just a bit confusing unless you read (b) before (a).
Maybe better to find the time in (a) using d = ½ a⋅t²
 
  • #5
Using the d=1.5a*t
48.0=1/2 6.0* t^2
48/(1/2*6.0)= 16
=4.0 ??

and for the Vx= Vx0 + ax(t)
Vx= (24.0 m/s) + (6.0 m/s²)(4.0s)
Vx= 48.0 m/s
what did i do wrong?

and for

x= x0 + vx0(t) + (1/2)ax(t)²
x= 0 +(24.0 m/s)(4.0s)+(1/2)(6.0 m/s²)(4.0s)²
x= 144 m

what should i use instead of the 6.0?
Im pretty frustrated that i feel completely lost on my homeowork today thanks for the help!
 
  • #6
What is the acceleration in the horizontal direction when he's airborne ?
 
  • #7
Wait, your first solution for (b) was correct!
You can also get it with Vf = Vi + at = 0 + 6*4 = 24.
For (d), the acceleration is zero when airborne:
x= x0 + vx0(t) + (1/2)ax(t)²
x= 0 +(24.0 m/s)(4.0s)+(1/2)(0)(4.0s)²
x= 96 m

You are very good at this, just a tiny bit of confusion about details in the question. Recommend you make a habit of writing down the numbers in the question in a way that makes sense to you at a glance.
I wrote
coyote.jpg
 

1. How do I know if I am solving a physics problem correctly?

One way to confirm that you are solving a physics problem correctly is to check your units. Make sure that your final answer has the correct units and that all of your calculations are done using the appropriate units. Additionally, you can check your answer by using the correct formulas and equations for the given problem.

2. What should I do if I am stuck on a physics problem?

If you are stuck on a physics problem, try breaking it down into smaller, more manageable parts. Also, make sure you understand the given information and what the problem is asking you to solve for. You can also try looking for similar problems or asking your teacher or classmates for help.

3. How can I improve my physics problem-solving skills?

To improve your physics problem-solving skills, practice is key. The more problems you solve, the better you will become at identifying key concepts, using appropriate equations, and applying problem-solving strategies. You can also try working with a study group or seeking additional resources such as textbooks or online tutorials.

4. Is there a correct way to set up a physics problem?

Yes, there is a general approach to setting up a physics problem. Begin by identifying what is given and what you are trying to solve for. Then, draw a diagram or sketch to help visualize the problem. Next, choose the appropriate formula or equation to use and plug in the given values. Finally, solve for the unknown variable and check your answer for accuracy and units.

5. How important is understanding the underlying concepts in physics?

Understanding the underlying concepts in physics is crucial for solving problems correctly. It allows you to make connections between different topics and apply your knowledge to various scenarios. Without a solid understanding of the concepts, it can be difficult to solve problems accurately and efficiently.

Similar threads

  • Introductory Physics Homework Help
Replies
5
Views
700
  • Introductory Physics Homework Help
Replies
6
Views
717
  • Introductory Physics Homework Help
Replies
6
Views
2K
  • Introductory Physics Homework Help
Replies
3
Views
214
  • Introductory Physics Homework Help
Replies
1
Views
2K
  • Introductory Physics Homework Help
Replies
14
Views
1K
  • Introductory Physics Homework Help
Replies
11
Views
777
  • Introductory Physics Homework Help
Replies
2
Views
1K
  • Introductory Physics Homework Help
Replies
1
Views
719
  • Introductory Physics Homework Help
Replies
14
Views
2K
Back
Top