MHB Non-Singular Bilinear Function

  • Thread starter Thread starter Sudharaka
  • Start date Start date
  • Tags Tags
    Function
Click For Summary
A non-singular bilinear function on a vector space V over a field F ensures that for any linear function ψ in V*, there exists a unique vector v in V such that ψ(x) equals f(x, v) for all x in V. This property establishes an isomorphism between V and V*, provided V is finite-dimensional. The term "non-singular" is often equated with "non-degenerate," particularly in the context of scalar products. Resources such as Serge Lang's Linear Algebra provide further insights into this topic. The discussion highlights the distinction in behavior between finite and infinite-dimensional spaces regarding this property.
Sudharaka
Gold Member
MHB
Messages
1,558
Reaction score
1
Hi everyone, :)

Here's a question that I have now clue on how to solve. I hope you can shed some light on it. :)

Question:

Let $f:V\times V\rightarrow F$ be a nonsingular bilinear function on a vector space $V$ over a field $F$. Prove that for any linear function $\psi\in V^*$ there is unique $v\in V$ such that $\psi(x)=f(x,\,v)$, for any $x\in V$, and that the map $v\rightarrow \psi$ is an isomorphism of $V$ and $V^*$.
 
Physics news on Phys.org
Hi,
I'm unfamiliar with the term non-singular bilinear function. If this just means an ordinary non-degenerate scalar product, then your question is a standard result for finite dimensional vector spaces. (For infinite dimension, it's false). See the wikipedia page Dual space - Wikipedia, the free encyclopedia for the result.
 
johng said:
Hi,
I'm unfamiliar with the term non-singular bilinear function. If this just means an ordinary non-degenerate scalar product, then your question is a standard result for finite dimensional vector spaces. (For infinite dimension, it's false). See the wikipedia page Dual space - Wikipedia, the free encyclopedia for the result.

Hi johng, :)

Thanks very much for the reply. Do you know of a link where this result is proved? Assuming non-singular is the same as non-degenerate.
 
I think almost any good linear algebra text should have the result. In particular, Serge Lang's book Linear Algebra has the complete discussion on this topic. I don't know of any on line proofs, but there probably are some.
 

Similar threads

  • · Replies 21 ·
Replies
21
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 13 ·
Replies
13
Views
1K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 15 ·
Replies
15
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K