Non-unitary gauge transformation

Click For Summary

Discussion Overview

The discussion revolves around the transformation properties of vector potentials and Dirac spinors under non-unitary gauge transformations. Participants explore the implications of these transformations on gauge invariance and the mathematical consistency of the formulations in the context of quantum field theory.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • One participant presents a transformation for vector potentials under a non-unitary gauge transformation and questions how the Dirac spinor transforms in this context.
  • Another participant seeks clarification on the nature of the spinor, suggesting that the $\gamma_0$ and $T$ matrices act on different spaces, which may affect the invariance considerations.
  • A participant reiterates the concern regarding the transformation of $\bar{\psi}$, noting that it transforms with $T^\dagger$ rather than $T^{-1}$, raising questions about the literature's assertions on non-unitary transformations.
  • There is a discussion about the representation of the Dirac field and the implications of complex representations of Lie groups on gauge invariance, particularly in relation to the choice of gauge group.

Areas of Agreement / Disagreement

Participants express differing views on the implications of non-unitary transformations for gauge invariance, with no consensus reached on how to resolve the apparent contradictions in the transformation properties of $\bar{\psi}$ and $A_\mu$.

Contextual Notes

The discussion highlights potential limitations in the assumptions about the representations of the gauge group and the nature of the transformations involved, particularly regarding the compatibility of different matrix spaces.

DuckAmuck
Messages
238
Reaction score
40
TL;DR
What happens for non-unitary gauge transformations when it comes to fermion factors?
You see in the literature that the vector potentials in a gauge covariant derivative transform like:
A_\mu \rightarrow T A_\mu T^{-1} + i(\partial_\mu T) T^{-1}
Where T is not necessarily unitary. (In the case that it is ##T^{-1} = T^\dagger##)
My question is then if T is not unitary, how is ##\bar{\psi}## transforming?
Since
\psi \rightarrow T\psi
\bar{\psi} \rightarrow (T\psi)^\dagger \gamma_0 = \psi^\dagger \gamma_0 \gamma_0 T^\dagger \gamma_0 = \bar{\psi} \gamma_0 T^\dagger \gamma_0
This seems to necessitate that \gamma_0 T^\dagger \gamma_0 = T^{-1}
This can only be the case if ##T^\dagger = T^{-1}##, or if ##T^\dagger## is a 4x4 matrix that multiplies with ##\gamma_0## matrices to give the inverse.
Otherwise, in general, you are left with something like:
\bar{\psi} (\partial_\mu + i A_\mu) \psi \rightarrow \bar{\psi} \gamma_0 T^\dagger \gamma_0 (\partial_\mu + i T A_\mu T^{-1} - (\partial_\mu T)T^{-1} ) T\psi
=\bar{\psi} (\gamma_0 T^\dagger \gamma_0 T) (\partial_\mu + i A_\mu) \psi
So to be gauge invariant, this object \gamma_0 T^\dagger \gamma_0 T = 1 but that is not the case in general.
Can this be simplified more, maybe for cases where T is a 2x2 matrix that commutes with ##\gamma_0##?
 
  • Like
Likes   Reactions: ohwilleke
Physics news on Phys.org
What is $\psi$? A Dirac spinor?

The $\gamma_0$ and $T$ are matrices in different spaces, the $\gamma_0$ acts on spinor index and $T$ on group "space" index. So you do not need to worry about the generator matrix for the group commute with $\gamma_0$ or not.

What group do you have in mind? SO(N)? G_2 ?
 
malawi_glenn said:
What is $\psi$? A Dirac spinor?

The $\gamma_0$ and $T$ are matrices in different spaces, the $\gamma_0$ acts on spinor index and $T$ on group "space" index. So you do not need to worry about the generator matrix for the group commute with $\gamma_0$ or not.

What group do you have in mind? SO(N)? G_2 ?
Yes, of course they are acting on different spaces in most cases. Was trying to keep things very generalized in an attempt to "rescue" invariance, but I think that may be overkill.
And, Psi is indeed a dirac spinor.
My question still remains on what to do about T being non-unitary.
As ##A_\mu \rightarrow T A_\mu T^{-1} +i (\partial_\mu T) T^{-1}##
But ##\bar{\psi} \rightarrow \bar{\psi} T^\dagger##
So it is not clear why literature asserts that the transformation on A is for non-unitary transformations, because ##\bar{\psi}## tranforms by ##T^\dagger## not ##T^{-1}##.
The transformation is something like:
##\bar{\psi} \gamma^\mu (\partial_\mu + iA_\mu)\psi \rightarrow \bar{\psi} \gamma^\mu T^\dagger T(\partial_\mu + iA_\mu)\psi## which is not invariant if T is not unitary. So what can remedy this if anything?
 
But you have to choose which representation the dirac field must transform under. And most (compact) Lie Groups have complex representations, but not all of them. This is why ##E_8## is never considered as a model for GUT's because it has no complex representations and you can not couple them to dirac fermions.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K