Non-unitary gauge transformation

Click For Summary
SUMMARY

The discussion focuses on the transformation properties of vector potentials and Dirac spinors under non-unitary gauge transformations. It establishes that while the vector potential transforms as Aμ → T Aμ T-1 + i(∂μT) T-1, the Dirac spinor transforms as ψ → Tψ and &bar;ψ → &bar;ψ T. The necessity for gauge invariance leads to the conclusion that for non-unitary transformations, the relation γ0 T γ0 T = 1 must hold, which is not generally satisfied. The discussion highlights the complexities involved when T is a non-unitary matrix and its implications for gauge invariance.

PREREQUISITES
  • Understanding of gauge theory and gauge invariance
  • Familiarity with Dirac spinors and their transformation properties
  • Knowledge of matrix representations in quantum mechanics
  • Basic concepts of Lie groups and their representations
NEXT STEPS
  • Research the implications of non-unitary transformations in gauge theories
  • Study the properties of Dirac spinors in various gauge groups
  • Explore the role of complex representations in Lie groups, particularly in relation to gauge invariance
  • Investigate the mathematical framework of gauge covariant derivatives and their applications
USEFUL FOR

The discussion is beneficial for theoretical physicists, particularly those specializing in quantum field theory, gauge theories, and particle physics. It is also relevant for researchers exploring the mathematical structures underlying gauge invariance and spinor fields.

DuckAmuck
Messages
238
Reaction score
40
TL;DR
What happens for non-unitary gauge transformations when it comes to fermion factors?
You see in the literature that the vector potentials in a gauge covariant derivative transform like:
A_\mu \rightarrow T A_\mu T^{-1} + i(\partial_\mu T) T^{-1}
Where T is not necessarily unitary. (In the case that it is ##T^{-1} = T^\dagger##)
My question is then if T is not unitary, how is ##\bar{\psi}## transforming?
Since
\psi \rightarrow T\psi
\bar{\psi} \rightarrow (T\psi)^\dagger \gamma_0 = \psi^\dagger \gamma_0 \gamma_0 T^\dagger \gamma_0 = \bar{\psi} \gamma_0 T^\dagger \gamma_0
This seems to necessitate that \gamma_0 T^\dagger \gamma_0 = T^{-1}
This can only be the case if ##T^\dagger = T^{-1}##, or if ##T^\dagger## is a 4x4 matrix that multiplies with ##\gamma_0## matrices to give the inverse.
Otherwise, in general, you are left with something like:
\bar{\psi} (\partial_\mu + i A_\mu) \psi \rightarrow \bar{\psi} \gamma_0 T^\dagger \gamma_0 (\partial_\mu + i T A_\mu T^{-1} - (\partial_\mu T)T^{-1} ) T\psi
=\bar{\psi} (\gamma_0 T^\dagger \gamma_0 T) (\partial_\mu + i A_\mu) \psi
So to be gauge invariant, this object \gamma_0 T^\dagger \gamma_0 T = 1 but that is not the case in general.
Can this be simplified more, maybe for cases where T is a 2x2 matrix that commutes with ##\gamma_0##?
 
  • Like
Likes   Reactions: ohwilleke
Physics news on Phys.org
What is $\psi$? A Dirac spinor?

The $\gamma_0$ and $T$ are matrices in different spaces, the $\gamma_0$ acts on spinor index and $T$ on group "space" index. So you do not need to worry about the generator matrix for the group commute with $\gamma_0$ or not.

What group do you have in mind? SO(N)? G_2 ?
 
malawi_glenn said:
What is $\psi$? A Dirac spinor?

The $\gamma_0$ and $T$ are matrices in different spaces, the $\gamma_0$ acts on spinor index and $T$ on group "space" index. So you do not need to worry about the generator matrix for the group commute with $\gamma_0$ or not.

What group do you have in mind? SO(N)? G_2 ?
Yes, of course they are acting on different spaces in most cases. Was trying to keep things very generalized in an attempt to "rescue" invariance, but I think that may be overkill.
And, Psi is indeed a dirac spinor.
My question still remains on what to do about T being non-unitary.
As ##A_\mu \rightarrow T A_\mu T^{-1} +i (\partial_\mu T) T^{-1}##
But ##\bar{\psi} \rightarrow \bar{\psi} T^\dagger##
So it is not clear why literature asserts that the transformation on A is for non-unitary transformations, because ##\bar{\psi}## tranforms by ##T^\dagger## not ##T^{-1}##.
The transformation is something like:
##\bar{\psi} \gamma^\mu (\partial_\mu + iA_\mu)\psi \rightarrow \bar{\psi} \gamma^\mu T^\dagger T(\partial_\mu + iA_\mu)\psi## which is not invariant if T is not unitary. So what can remedy this if anything?
 
But you have to choose which representation the dirac field must transform under. And most (compact) Lie Groups have complex representations, but not all of them. This is why ##E_8## is never considered as a model for GUT's because it has no complex representations and you can not couple them to dirac fermions.
 

Similar threads

  • · Replies 17 ·
Replies
17
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 12 ·
Replies
12
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 24 ·
Replies
24
Views
3K