- #1
- 170
- 18
Homework Statement
The Fourier transfrom of the wave function is given by
$$\Phi(p) = \frac{N}{(1+\frac{a_0^2p^2}{\hbar^2})^2}$$
where ##p:=|\vec{p}|## in 3 dimensions.
Find N, choosing N to be a positive real number.
Homework Equations
$$\int d^3\vec{p}|\Phi(p)|^2=1$$
, over all p in the 3 dimensions.
The Attempt at a Solution
First finding the complex conjugate,
$$\Phi^*(p) = \frac{N}{(1+\frac{a_0^2 p^2}{\hbar^2})^2}$$
So,
$$|\Phi(p)|^2 = \frac{N^2}{(1+\frac{a_0^2 p^2}{\hbar^2})^4}$$
So,
$$\frac{1}{N^2} = \int d^3 \vec{p}\frac{1}{(1+\frac{a_0^2 p^2}{\hbar^2})^4}$$
How would I change ##d^3\vec{p}## to be a triple integral, one of which is over dp?
Last edited: