I have a system of spatial ODEs to solve... Actually a DAE system, but here's the issue:(adsbygoogle = window.adsbygoogle || []).push({});

The equations are vaild over a specific domain, x = 0..L

The equations are only bound at one point (thier "initial point") but at either 0 or L

f1(0)=0

f2(0)=100

f3(L)=0

f4(L)=100

(also an algebraic expression that links all of the functions)

Essentially, those functions bound at L are moving "backwards" with respect to those bound at 0.

My question is, is this an initial value problem, or a boundary value problem? I started in MAPLE, and it decided (automatically) that it was a BVP. In MATLAB I am attempting to use bvp4c to come up with a solution, but is it really even a BVP if it only has one boundary condition, essentially an initial conditition, but defined at different spatial coordinates for different functions?

Your insight is appreciated.

**Physics Forums - The Fusion of Science and Community**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Numerical Solution to ODE System - IVP or BVP?

Loading...

Similar Threads - Numerical Solution System | Date |
---|---|

A Numerical solution techniques for 6th order PDE's | Feb 3, 2018 |

A Numerical solution for a two dimensional 3rd order nonlinear diff. eq. | Jan 17, 2018 |

I 2nd order ODE numerical solution | Nov 18, 2017 |

Segregated method for numerical solution of a PDE system | Oct 20, 2012 |

Coupled PDE System - Numerical Solution | Aug 26, 2012 |

**Physics Forums - The Fusion of Science and Community**