Hi, I am trying to solve the following ODE for my maths project:(adsbygoogle = window.adsbygoogle || []).push({});

## y'' = \frac{\alpha}{2}y^3 - \frac{3}{2}y^2 + y - \frac{3}{x} y'##

under the following boundary conditions:

## y'(0) = 0 ##

## y(x) \rightarrow y \_ \equiv 0\ \text{as}\ x \rightarrow \infty ##

As a first step, I converted this problem into a set of coupled ODEs:

## \frac{dy}{dx} = z##

## \frac{dz}{dx} = \frac{\alpha}{2}y^3 - \frac{3}{2}y^2 + y - \frac{3}{x} z##

under the following boundary conditions:

## z(0) = 0 ##

## y(x) \rightarrow y \_ \equiv 0\ \text{as}\ x \rightarrow \infty ##

Next, my source tells me to use the shooting method to convert the BVP into an IVP, which means that I have to use two initial guesses of ## y(0) ## to be able to use the secant method to find the correct value of ## y(0) ##.

Now, my question is, according to my source, I can avoid the singularity at x = 0 using Taylor expansion as follows:

## y(r_{0}) = y_{0} + \frac{1}{16} r_{0}^{2} (2y_{0} - 3y_{0}^{2} + \alpha y_{0}^{3}) ##

I see how you can estimate ## y(r_{0}) ## where ## r_{0} ## is a tiny distance away from the origin, but I don't really see how they dervied this expression. Could anyone help me out?

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Solving an ODE using shooting method

Loading...

**Physics Forums | Science Articles, Homework Help, Discussion**