Undergrad Numerically solving a non-local PDE

Click For Summary
The discussion centers on numerically solving a non-local partial differential equation (PDE) defined over a spatial region and time. The PDE features a term where the change in the function at a point depends on values from all other points, complicating the numerical solution. A discretized approach is proposed, leading to a matrix form that incorporates boundary conditions and numerical integration techniques like the trapezoid rule and Gauss-Legendre quadrature. The matrix M is constructed based on how the numerical integration is performed, with specific adjustments needed for boundary conditions. The conversation highlights the progress being made in applying accurate numerical schemes to this complex problem.
ergospherical
Science Advisor
Homework Helper
Education Advisor
Insights Author
Messages
1,100
Reaction score
1,387
I have a PDE to solve numerically on the region ##x \in [0,1]## and ##t \in (0, \infty)##. It is of the form:$$\frac{\partial f(x,t)}{\partial t} = g(x,t) + \int_0^1 h(x, x') f(x', t) dx'$$The second term is the tricky part. The change in ##f(x,t)## at ##x## depends on the value ##f(x',t)## of every other point ##x'## in the space.

In discretized form, it is something like$$f(x_i,t_{j+1}) = f(x_i,t_j) + \Delta t \left[ g(x_i,t_i) + \sum_{j \neq i} h(x_i, x_j) f(x_j, t_i) \right]$$How can I apply an accurate scheme like Runge-Kutta to this system?
 
Physics news on Phys.org
Why do you exclude j = i from the sum? And what are the boundary conditions?

After discretizing in space, you must end up with <br /> \dot{\mathbf{f}} = M\mathbf{f} + \mathbf{g} where f_i(t)= f(x_i, t) etc. with the matrix M depending on how you do the numerical integration. For the trapezoid rule with x_n = \frac{n}{N - 1} = n \Delta x, <br /> \int_0^1 h(x,x&#039;)f(x&#039;,t)\,dx&#039; \approx \frac12 \Delta x (h(x,x_0)f_0 + 2h(x,x_1)f_1 + \dots + h(x,x_{N-1})f_{N-1}) so that <br /> M_{ij} = \begin{cases} \frac12 \Delta x h(x_i,x_j) &amp; j = 0, N - 1 \\<br /> \Delta x h(x_i, x_j) &amp; j = 1 , \dots, N - 2 \end{cases} You may need to adjust rows 0 and N - 1 in order to enforce a boundary condition.
 
Last edited:
  • Like
Likes ergospherical and docnet
Another alternative is to use Gauss-Legendre quadrature, <br /> \int_0^1 h(x,x&#039;)f(x&#039;,t)\,dx = \frac12\int_{-1}^1 h(x,\tfrac12(z + 1))f(\tfrac12(z + 1),t)\,dz<br /> \approx \sum_{j=0}^{N-1} \tfrac12 w_j h(x,\tfrac12(z_j + 1))f_j which is exact for polynomials of order up to 2N - 1 in x&#039;. The z_i \in [-1,1] are then the Gauss-Legendre points with x_i = \frac12(z_i + 1) and <br /> M_{ij} = \frac12 w_jh(x_i,x_j).
 
Last edited:
  • Like
Likes ergospherical

Similar threads

  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 5 ·
Replies
5
Views
4K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 36 ·
2
Replies
36
Views
5K
  • · Replies 6 ·
Replies
6
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K