Obtain the two incongruent solutions modulo 210 of the system

  • Thread starter Thread starter Math100
  • Start date Start date
  • Tags Tags
    System
Click For Summary

Homework Help Overview

The discussion revolves around a system of congruences involving modular arithmetic, specifically seeking incongruent solutions modulo 210. The system includes three congruences: 2x ≡ 3 (mod 5), 4x ≡ 2 (mod 6), and 3x ≡ 2 (mod 7).

Discussion Character

  • Mixed

Approaches and Questions Raised

  • Participants explore the application of the Chinese Remainder Theorem to find solutions to the system of congruences. There are discussions about the implications of the greatest common divisor in the second congruence and the resulting incongruent solutions.

Discussion Status

The conversation includes attempts to verify the correctness of the solutions derived from the original poster's calculations. Some participants express concerns about a potential typo in the final solutions, leading to further questioning and clarification among the group.

Contextual Notes

There is a noted discrepancy regarding the final solutions, with participants questioning the validity of one of the proposed solutions. The discussion reflects an ongoing examination of the calculations and assumptions made throughout the problem-solving process.

Math100
Messages
823
Reaction score
234
Homework Statement
Obtain the two incongruent solutions modulo ## 210 ## of the system
## 2x\equiv 3\pmod {5} ##
## 4x\equiv 2\pmod {6} ##
## 3x\equiv 2\pmod {7} ##.
Relevant Equations
None.
Consider the following system of congruences:
## 2x\equiv 3\pmod {5} ##
## 4x\equiv 2\pmod {6} ##
## 3x\equiv 2\pmod {7} ##.
Then
\begin{align*}
&2x\equiv 3\pmod {5}\implies 6x\equiv 9\pmod {5}\implies x\equiv 4\pmod {5}\\
&4x\equiv 2\pmod {6}\implies 2x\equiv 1\pmod {3}\\
&3x\equiv 2\pmod {7}\implies 6x\equiv 4\pmod {7}\implies -x\equiv 4\pmod {7}\implies x\equiv 3\pmod {7}.\\
\end{align*}
Note that ## 2x\equiv 1\pmod {3}\implies x\equiv 2\pmod {6} ## or ## x\equiv 5\pmod {6} ## because
## gcd(4, 6)=2 ##, which implies that there are two incongruent solutions ## x_{0}, x_{0}+\frac{6}{2} ## where ## x_{0}=2 ##.
Applying the Chinese Remainder Theorem produces:
## n=5\cdot 6\cdot 7=210 ##.
This means ## N_{1}=\frac{210}{5}=42, N_{2}=\frac{210}{6}=35 ## and ## N_{3}=\frac{210}{7}=30 ##.
Observe that
\begin{align*}
&42x_{1}\equiv 1\pmod {5}\implies 2x_{1}\equiv 1\pmod {5}\\
&\implies 6x_{1}\equiv 3\pmod {5}\implies x_{1}\equiv 3\pmod {5}\\
&35x_{2}\equiv 1\pmod {6}\implies -x_{2}\equiv 1\pmod {6}\\
&\implies x_{2}\equiv -1\pmod {6}\implies x_{2}\equiv 5\pmod {6}\\
&30x_{3}\equiv 1\pmod {7}\implies 2x_{3}\equiv 1\pmod {7}\\
&\implies 8x_{3}\equiv 4\pmod {7}\implies x_{3}\equiv 4\pmod {7}.\\
\end{align*}
Now we have ## x_{1}=3, x_{2}=5 ## and ## x_{3}=4 ##.
Thus
\begin{align*}
&x\equiv (4\cdot 42\cdot 3+2\cdot 35\cdot 5+3\cdot 30\cdot 4)\pmod {210}\equiv 1214\pmod {210}\equiv 164\pmod {210}\\
&x\equiv (4\cdot 42\cdot 3+5\cdot 35\cdot 5+3\cdot 30\cdot 4)\pmod {210}\equiv 1739\pmod {210}\equiv 59\pmod {210}.\\
\end{align*}
Therefore, the two incongruent solutions modulo ## 210 ## are ## x\equiv 59, 64\pmod {210} ##.
 
Physics news on Phys.org
Looks good, except for the typo at the end.
 
fresh_42 said:
Looks good, except for the typo at the end.
What's the typo at the end?
 
Math100 said:
What's the typo at the end?
##64## is no solution.
 
  • Haha
Likes   Reactions: Math100
fresh_42 said:
##64## is no solution.
I was careless.
 
Math100 said:
I was careless.
I have made mistakes worse than that!
 
fresh_42 said:
I have made mistakes worse than that!
Really? That's difficult to imagine.
 
Math100 said:
Really? That's difficult to imagine.
In chess speak, I'd say: you look at the position, into the position, and do not see the obvious. Even grandmasters have run into knight forks. Not that I am one, but **** happens.
 
  • Like
  • Haha
Likes   Reactions: SammyS and Math100

Similar threads

  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
3
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K