Olympiad question on destructive interference

  • Thread starter Thread starter Glenn G
  • Start date Start date
Click For Summary
SUMMARY

The forum discussion centers on a past Olympiad question regarding destructive interference from two in-phase wave sources, A and B, separated by a distance d. Participants express confusion over the question's wording, particularly regarding the relevance of the radio's orientation and the distinction between maximum wavelength and minimum speaker separation. The consensus is that for complete destructive interference to occur, the path difference must be half a wavelength, and if the distance d is less than half a wavelength, complete destructive interference is impossible. The discussion highlights the need for clarity in physics questions to avoid misinterpretation.

PREREQUISITES
  • Understanding of wave interference principles
  • Knowledge of wavelength and path difference concepts
  • Familiarity with in-phase and out-of-phase wave behavior
  • Basic comprehension of physics Olympiad question formats
NEXT STEPS
  • Study the principles of wave interference in detail
  • Learn about the mathematical relationships between wavelength, frequency, and wave speed
  • Explore examples of destructive interference in real-world applications
  • Review past physics Olympiad questions for better understanding of common pitfalls
USEFUL FOR

Students preparing for physics Olympiads, educators teaching wave mechanics, and anyone interested in mastering the concepts of wave interference.

Glenn G
Messages
113
Reaction score
12
1693070630781.png

Hello all, I have been working through a number of past Olympiad questions for fun. This one, though, I find very strange - even after looking at the answer i'm confused. I know when the path difference from the two speaker is lambda/2 you would get destructive interference (typical A level answer) - the answer given on the mark scheme doesn't even completely correlate with the question. I don't get the first marking point, also with the second marking point, 2 waves are collinear with the centre of the speaker, so this means that it is as if both speakers are sending waves from the centre point? BUT then there'd be no path difference and no destructive interference - would apprecate any help so I can understand this.
 
Physics news on Phys.org
The question/answer appear (IMO) to be badly written for the following reasons:

1. The question seems to ask what “orientation of the radio” is needed for destructive interference. But the radio’s orientation is irrelevant.

2. The question asks for the “maximum wavelength ##l##”but the answer supplied is the minimum speaker separation. And a different symbol (##\lambda##) is used for wavelength.

3. The question asks about ‘complete destructive interference’. But (being picky) any destructive interference will not be complete due to amplitude differences between the two interfering waves

So things seem a bit muddled.

I’d guess the intended question is equivalent to this:

A and B are in-phase, point, single frequency wave sources separated by a distance ##d##.

a) In terms of ##d##, what it is maximum wavelength for destructive interference (2 waves meeting exactly in antiphase) to be possible?

b) For this maximum value of wavelength, where does destructive interference occur?

Minor edits.
 
  • Like
Likes   Reactions: MatinSAR, DeBangis21 and berkeman
Glenn G said:
2 waves are collinear with the centre of the speaker, so this means that it is as if both speakers are sending waves from the centre point?
No, that's not what it says. It is saying that the paths of the waves are along the straight line through the two speakers.
 
  • Like
Likes   Reactions: MatinSAR and Tom.G
Thanks Steve,

Ah so makes sense that if d is less than half a wavelength then at no point on that line between the 2 speakers can there be a point where there is complete destructive interference since they won’t ever be out of phase by half a cycle … ok if I’ve got that correct it makes sense now, certainly not clear to me from the question that that is what they were getting at,
Steve4Physics said:
The question/answer appear (IMO) to be badly written for the following reasons:

1. The question seems to ask what “orientation of the radio” is needed for destructive interference. But the radio’s orientation is irrelevant.

2. The question asks for the “maximum wavelength ##l##”but the answer supplied is the minimum speaker separation. And a different symbol (##\lambda##) is used for wavelength.

3. The question asks about ‘complete destructive interference’. But (being picky) any destructive interference will not be complete due to amplitude differences between the two interfering waves

So things seem a bit muddled.

I’d guess the intended question is equivalent to this:

A and B are in-phase, point, single frequency wave sources separated by a distance ##d##.

a) In terms of ##d##, what it is maximum wavelength for destructive interference (2 waves meeting exactly in antiphase) to be possible?

b) For this maximum value of wavelength, where does destructive interference occur?

Minor edits.
 

Similar threads

Replies
20
Views
5K
  • · Replies 20 ·
Replies
20
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
7
Views
5K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K