- #1
bryverine
- 1
- 0
Homework Statement
The complex amplitudes of a monochromatic wave of wavelength ##\lambda## in the z=0 and z=d planes are f(x,y) and g(x,y), redprctively. Assume ##d=10^4 \lambda##, use harmonic analysis to determine g(x,y) in the following cases:
(a) f(x,y)=1
...
(d) ##f(x,y)=cos^2(\pi y / 2 \lambda)##
Homework Equations
Part (d):
##f(x,y)=cos^2(\pi y / 2 \lambda)=.5(1+cos(\pi y / \lambda)=.5(1+.5(exp(+i\pi y / \lambda)+exp(-i\pi y / \lambda)) ##
Fourier Transform Equations:
##F(\nu_x,\nu_y)= \int_{-\infty}^\infty f(x,y)exp(-i2\pi (\nu_xx+\nu_yy))dxdy##
##f(x,y)= \int_{-\infty}^\infty F(\nu_x,\nu_y)=exp(+i2\pi (\nu_xx+\nu_yy))d\nu_xd\nu_y##
Transfer Function of Free Space (Fraunhofer Approximation):
##g(x,y)=h_0exp(\frac{i\pi(x^2+y^2)}{\lambda d})F(\frac{x}{\lambda d},\frac{y}{\lambda d})##
The Attempt at a Solution
##f(x,y)=1\\
F(\nu_x,\nu_y)= \int_{-\infty}^\infty exp(-i2\pi (\nu_xx+\nu_yy)dxdy=\delta(\nu_x-0)\delta(\nu_y-0)
\\
g(x,y)=\int_{-\infty}^\infty F(\nu_x,\nu_y)H (\nu_x,\nu_y)exp(+i2\pi (\nu_xx+\nu_yy))d\nu_xd\nu_y\\
Assume\;Fraunhofer\;Approx\; \lambda <<d\\
g(x,y)=h_0exp(\frac{i\pi(x^2+y^2)}{\lambda d})F(\frac{x}{\lambda d},\frac{y}{\lambda d})\\
g(x,y)=h_0exp(\frac{i\pi(x^2+y^2)}{\lambda d})\delta(\frac{x}{\lambda d})\delta(\frac{y}{\lambda d})\\
g(x,y)=(i/\lambda d)exp(-ikd)exp(\frac{i\pi(x^2+y^2)}{\lambda d})\delta(\frac{x}{\lambda d})\delta(\frac{y}{\lambda d})\\
g(x,y)=(i/\lambda d)exp(-ikd)[exp(\frac{i\pi x^2}{\lambda d})\delta(\frac{x}{\lambda d})][exp(\frac{i\pi y^2}{\lambda d})\delta(\frac{y}{\lambda d})]\\##
I think because the function is f(x,y)=1, there should just be propogation through free space. This should go to g(x,y)= some phase shift. My guess is that having a delta function at the end is wrong and it should "disappear" somehow.
I'm using the Fundamentals of Photonics, Bahaa E.A. Saleh (either edition).
Thank you for your help!