1. Not finding help here? Sign up for a free 30min tutor trial with Chegg Tutors
    Dismiss Notice
Dismiss Notice
Join Physics Forums Today!
The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

Orbital period around Schwarzschild radius

  1. Nov 1, 2014 #1
    1. The problem statement, all variables and given/known data
    An observer is orbiting at a radius r = 3GM, [itex] \theta = \frac{\pi}{2} [/itex] and [itex] \phi = \omega t [/itex] where w is constant.
    The observer sends a photon around the circular orbit in the positive [itex] \phi [/itex] direction. What is the proper time [itex] \Delta \tau [/itex] for the photon to complete one orbit and return to the observer?

    2. Relevant equations
    Schwarzschild line element where dr =0 and [itex]d\theta[/itex] =0.

    3. The attempt at a solution

    From the line element we have
    [tex] \left(\frac{d\tau}{dt}\right)^2 = 1 - \frac{2GM}{r} - r^2 \left(\frac{d\phi}{dt}\right)^2 [/tex]
    [tex] \left(\frac{d\tau}{dt}\right)^2 = 1 - \frac{2GM}{r} - r^2 \omega^2 [/tex]

    I was trying to use [itex] \omega^2 = \frac{GM}{r^3} [/itex] but that just gives

    [tex] \left(\frac{d\tau}{dt}\right)^2 = 1 - \frac{2GM}{r} - r^2 \frac{GM}{r^3} [/tex]
    [tex] \left(\frac{d\tau}{dt}\right)^2 = 1 - \frac{2GM}{r} - \frac{GM}{r} [/tex]
    [tex] \left(\frac{d\tau}{dt}\right)^2 = 1 - \frac{3GM}{3GM} [/tex]
    as r = 3GM. This gives zero and I'm not really sure what to do with it. Have I gone wrong somewhere? What should I do with the w?
     
  2. jcsd
  3. Nov 1, 2014 #2

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    Light follows light-like (naturally) geodesics. These have the defining property of ds=0 so it shoukd come as no surprise that it has length zero.

    This makes me suspect that the problem wants you to compute the proper time for an observer at fixed spatial coordinates before the light signal comes back from the opposite direction.
     
  4. Nov 1, 2014 #3
    I have already worked out the proper time for a stationary observer, [itex] \Delta \tau = 6 \pi GM[/itex]. The question specifically states that the observer is not at fixed coordinates, but moving with [itex] \phi = \omega t[/itex] and emitting a photon while orbiting.
     
  5. Nov 1, 2014 #4

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    I see, so note that the observer according to the problem statement is not necessarily moving on a geodesic. When you put ##\omega=0## you should regain your result for the stationary observer.
     
  6. Nov 1, 2014 #5
    How can I simply assume that [itex] \omega = 0[/itex]? It says that w is a constant. Since the previous question was for the case of the stationary observer, I'm quite sure that this one isn't after the same answer. Although I cannot see any way around it
     
  7. Nov 1, 2014 #6

    Orodruin

    User Avatar
    Staff Emeritus
    Science Advisor
    Homework Helper
    Gold Member

    You cannot. What I said was that, when you have solved your problem, letting ##\omega = 0## should give you the result you had before. Your answer to the current problem should depend on ##\omega##, which you can treat as an arbitrary constant (but with ##\omega^2 < 3GM/r^3## or you will have an observer following a non-time-like curve - as you found out for the limiting case already).

    Edit: It is not necessary to solve the problem, but note that, regardless of the value of ##\omega##, the observer will have a non-zero proper acceleration.
     
Know someone interested in this topic? Share this thread via Reddit, Google+, Twitter, or Facebook

Have something to add?
Draft saved Draft deleted



Similar Discussions: Orbital period around Schwarzschild radius
Loading...