Otimes notation and tau matrices used in definition of gamma matrices?

Click For Summary
Zee's Quantum Field Theory book defines gamma matrices using both Pauli matrices and tau matrices, with the notation involving the tensor product. The tau matrices are identified as equivalent to the sigma matrices, which raises questions about the use of different notations for the same concepts. The discussion highlights confusion over the notation and its application in defining gamma matrices. Additionally, there is a note that the earlier expression for gamma^i does not align with Zee's presentation. This indicates a need for clarity in notation within quantum field theory discussions.
Peeter
Messages
303
Reaction score
3
In Zee's Quantum Field theory book he writes

\begin{align}\gamma^0 &= \begin{bmatrix}I & 0 \\ 0 & -I\end{bmatrix}=I \otimes \tau_3 \\ \gamma^i &= \begin{bmatrix}0 & \sigma^i \\ \sigma^i & 0\end{bmatrix}=\sigma^i \otimes \tau_2 \\ \gamma^5 &=\begin{bmatrix}0 & I \\ I & 0\end{bmatrix}=I \otimes \tau_1 \end{align}

The Pauli matrices \sigma^i I've seen. However, I have two questions

1) What are these \tau_i matrices?
2) I'm not familiar with this \otimes notation.
 
Physics news on Phys.org
strangerep said:
Try Wiki:

http://en.wikipedia.org/wiki/Tensor_product#Kronecker_product_of_two_matrices

That should also allow you to reverse-engineer the tau matrices... :-)

I find that the tau matrices are just the sigma matrices. Odd that two different notations would be used. One notation when defining the gamma matrices in terms sigmas directly, and an entirely different notation when using the tensor product?
 
Peeter said:
I find that the tau matrices are just the sigma matrices.
... which is what Zee says beneath his eq(4) on p90.

Odd that two different notations would be used. One notation when defining the gamma matrices in terms sigmas directly, and an entirely different notation when using the tensor product?

I don't use tau's myself.

BTW, your earlier expression for gamma^i doesn't match Zee's.
 
I am slowly going through the book 'What Is a Quantum Field Theory?' by Michel Talagrand. I came across the following quote: One does not" prove” the basic principles of Quantum Mechanics. The ultimate test for a model is the agreement of its predictions with experiments. Although it may seem trite, it does fit in with my modelling view of QM. The more I think about it, the more I believe it could be saying something quite profound. For example, precisely what is the justification of...

Similar threads

  • · Replies 22 ·
Replies
22
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 17 ·
Replies
17
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
4K
Replies
3
Views
1K
  • · Replies 11 ·
Replies
11
Views
5K
  • · Replies 3 ·
Replies
3
Views
12K
  • · Replies 4 ·
Replies
4
Views
4K