Parabola Tangent: GP Relation for Fixed Point Chords

  • Context: MHB 
  • Thread starter Thread starter DaalChawal
  • Start date Start date
  • Tags Tags
    Doubt Parabola
Click For Summary

Discussion Overview

The discussion revolves around the geometric relationships involving tangents drawn from points on a parabola to a circle, specifically focusing on conditions under which certain points and parameters are in geometric progression (G.P.) and the implications of a fixed point for chords of contact.

Discussion Character

  • Technical explanation
  • Debate/contested

Main Points Raised

  • Some participants propose that for a tangent drawn at a point on the parabola \(y^2 = 4ax\), certain conditions involving the coordinates and parameters lead to relationships in G.P.
  • One participant provides a specific example with coordinates \((x_1, y_1) = (a, 2a)\) and calculates the slope and equation of the tangent line, leading to intersections with the circle \(x^2 + y^2 = a^2\).
  • Another participant questions the interpretation of the problem, suggesting that the fixed point \((x_2, y_2)\) does not necessarily lie on the circle, which raises concerns about the assumptions made in the problem.
  • There is a suggestion that there may be two distinct tangent lines: one to the parabola and another to the circle, indicating a potential misunderstanding or ambiguity in the problem's translation or interpretation.

Areas of Agreement / Disagreement

Participants express differing interpretations of the problem, particularly regarding the nature of the tangents and the role of the fixed point. No consensus is reached on the correct interpretation or the implications of the conditions presented.

Contextual Notes

There are unresolved assumptions regarding the relationship between the fixed point and the circle, as well as the nature of the tangents involved. The discussion reflects varying interpretations of the problem's requirements and conditions.

DaalChawal
Messages
85
Reaction score
0
Tangent is drawn at any point ( $x_1$ , $y_1$ ) other than vertex on the parabola $y^2$ = 4ax . If tangents are drawn from any point on this tangent to the circle $x^2$ + $y^2$ = $a^2$ such that all chords of contact pass through a fixed point ( $x_2$ , $y_2$ ) then
(A) $x_1$ , a , $x_2$ are in G.P.
(B) $y_{1} \over 2$ ,a, $y_2$ are in G.P.
(C) -4 , $y_{1} \over y_{2}$ , $x_{1} \over x_{2}$ are in G.P.
(D) $x_1$ $x_2$ + $y_1$ $y_2$ = $a^2$
 
Mathematics news on Phys.org
DaalChawal said:
Tangent is drawn at any point $( x1,y_1 )$ other than vertex on the parabola $y^2 = 4ax$.
let $(x_1,y_1) = (a, 2a)$

slope of the tangent line at $(a,2a)$ is $m = 1$

tangent line equation is $y - 2a = x-a \implies y = x+a$

$y = x+a$ intersects the circle $x^2+y^2 = a^2$ when $x^2 + (x+a)^2 = a^2 \implies 2x(x+a) = 0 \implies x_2 = 0 \text{ or } x_2 = -a$

$x_2 = 0 \implies y_2 = a$

(A) $\{x_1, a, x_2\} = \{a, a, 0\}$

(B) $\{y_1/2, a, y_2\} = \{a, a, a\}$

(C) $\{-4, y_1/y_2, x_1/x_2 \} = \{-4, 2, \emptyset \}$

(D) $x_1x_2 + y_1y_2 = a \cdot 0 + 2a \cdot a = 2a^2$now, check the four choices for $x_2=-a$
 
DaalChawal said:
If tangents are drawn from any point on this tangent to the circle x2x2x^2 + y2y2y^2 = a2a2a^2
skeeter said:
y=x+ay=x+ay = x+a intersects the circle x2+y2=a2x2+y2=a2x^2+y^2 = a^2
Here the question says that from any point on the tangent to parabola, a tangent to the circle is drawn and that tangent is the chord of contact of parabola which passes through ( $x_2$ , $y_2$ ). And you have taken that tangent of parabola as chord of contact of circle also question says ( $x_2$ , $y_2$ ) is a fixed point that does not mean it lies on circle. Do correct me if I'm wrong.
 
So, are there two different tangent lines, one tangent to the parabola and the other tangent to the circle?

Has this problem been translated to English?

Maybe you can post your interpretation with a sketch?
 
Yes, there are two different tangent lines.
skeeter said:
Has this problem been translated to English?

No, you can look it's the question no. 255
photo_2021-04-06_21-09-17.jpg


This is what I'm saying

WIN_20210410_00_19_18_Pro.jpg
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
4K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
2
Views
1K
  • · Replies 18 ·
Replies
18
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
5
Views
2K