MHB Parabola Tangent: GP Relation for Fixed Point Chords

  • Thread starter Thread starter DaalChawal
  • Start date Start date
  • Tags Tags
    Doubt Parabola
AI Thread Summary
The discussion centers on the relationship between tangents drawn from a point on a parabola to a circle, specifically focusing on the conditions under which the chords of contact pass through a fixed point. It is established that if tangents are drawn from any point on the parabola \(y^2 = 4ax\) to the circle \(x^2 + y^2 = a^2\), certain geometric properties hold, including relationships in geometric progression (G.P.) for specific coordinates. The tangent line at the point \((a, 2a)\) is derived, leading to intersections with the circle that yield specific values for \(x_2\) and \(y_2\). The conversation also clarifies that there are indeed two distinct tangent lines involved—one for the parabola and another for the circle. Overall, the problem emphasizes the geometric interplay between the parabola and the circle while exploring fixed points and tangents.
DaalChawal
Messages
85
Reaction score
0
Tangent is drawn at any point ( $x_1$ , $y_1$ ) other than vertex on the parabola $y^2$ = 4ax . If tangents are drawn from any point on this tangent to the circle $x^2$ + $y^2$ = $a^2$ such that all chords of contact pass through a fixed point ( $x_2$ , $y_2$ ) then
(A) $x_1$ , a , $x_2$ are in G.P.
(B) $y_{1} \over 2$ ,a, $y_2$ are in G.P.
(C) -4 , $y_{1} \over y_{2}$ , $x_{1} \over x_{2}$ are in G.P.
(D) $x_1$ $x_2$ + $y_1$ $y_2$ = $a^2$
 
Mathematics news on Phys.org
DaalChawal said:
Tangent is drawn at any point $( x1,y_1 )$ other than vertex on the parabola $y^2 = 4ax$.
let $(x_1,y_1) = (a, 2a)$

slope of the tangent line at $(a,2a)$ is $m = 1$

tangent line equation is $y - 2a = x-a \implies y = x+a$

$y = x+a$ intersects the circle $x^2+y^2 = a^2$ when $x^2 + (x+a)^2 = a^2 \implies 2x(x+a) = 0 \implies x_2 = 0 \text{ or } x_2 = -a$

$x_2 = 0 \implies y_2 = a$

(A) $\{x_1, a, x_2\} = \{a, a, 0\}$

(B) $\{y_1/2, a, y_2\} = \{a, a, a\}$

(C) $\{-4, y_1/y_2, x_1/x_2 \} = \{-4, 2, \emptyset \}$

(D) $x_1x_2 + y_1y_2 = a \cdot 0 + 2a \cdot a = 2a^2$now, check the four choices for $x_2=-a$
 
DaalChawal said:
If tangents are drawn from any point on this tangent to the circle x2x2x^2 + y2y2y^2 = a2a2a^2
skeeter said:
y=x+ay=x+ay = x+a intersects the circle x2+y2=a2x2+y2=a2x^2+y^2 = a^2
Here the question says that from any point on the tangent to parabola, a tangent to the circle is drawn and that tangent is the chord of contact of parabola which passes through ( $x_2$ , $y_2$ ). And you have taken that tangent of parabola as chord of contact of circle also question says ( $x_2$ , $y_2$ ) is a fixed point that does not mean it lies on circle. Do correct me if I'm wrong.
 
So, are there two different tangent lines, one tangent to the parabola and the other tangent to the circle?

Has this problem been translated to English?

Maybe you can post your interpretation with a sketch?
 
Yes, there are two different tangent lines.
skeeter said:
Has this problem been translated to English?

No, you can look it's the question no. 255
photo_2021-04-06_21-09-17.jpg


This is what I'm saying

WIN_20210410_00_19_18_Pro.jpg
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top