MHB Parrot Guy's question at Yahoo Answers regarding a summation proof by induction

Click For Summary
The discussion centers on using mathematical induction to prove the formula for the summation of the series 2 + 10 + 24 + 44 + ... + n(3n - 1) equating to n^2(n+1). The base case is verified as true for n=1, establishing the foundation for induction. The induction hypothesis assumes the formula holds for n=k, and the induction step involves adding the next term to both sides and simplifying. Through factoring and rewriting, the proof demonstrates that the formula also holds for n=k+1. The proof is successfully completed, confirming the validity of the original statement.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Mathematical Induction Problem help?



Use Mathematical Induction to prove the following statement:

2 + 10 + 24 + 44 + . . . + n(3n - 1) = n^2(n+1)

I have posted a link there to this thread so the OP can view my work.
 
Mathematics news on Phys.org
Hello Parrot Guy,

We are given to prove:

$$\sum_{j=1}^n\left(j(3j-1) \right)=n^2(n+1)$$

First, we check to see if the base case $P_1$ is true:

$$\sum_{j=1}^1\left(j(3j-1) \right)=1^2(1+1)$$

$$1(3\cdot1-1)=1(1+1)$$

$$2=2$$

The base case is true, so next we state the induction hypothesis $P_k$:

$$\sum_{j=1}^k\left(j(3j-1) \right)=k^2(k+1)$$

As our induction step, we may add $$(k+1)(3(k+1)-1)$$ to both sides:

$$\sum_{j=1}^k\left(j(3j-1) \right)+(k+1)(3(k+1)-1)=k^2(k+1)+(k+1)(3(k+1)-1)$$

On the left, incorporate the new term into the summation and on the right, factor and distribute:

$$\sum_{j=1}^{k+1}\left(j(3j-1) \right)=(k+1)\left(k^2+3k+2 \right)$$

Factor further on the right:

$$\sum_{j=1}^{k+1}\left(j(3j-1) \right)=(k+1)(k+1)(k+2)$$

Rewrite the right side:

$$\sum_{j=1}^{k+1}\left(j(3j-1) \right)=(k+1)^2((k+1)+1)$$

We have derived $P_{k+1}$ from $P_{k}$ thereby completing the proof by induction.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K