Partial Differential Equation: Is There an Easy Way to Solve This?

Click For Summary
SUMMARY

The forum discussion centers on solving a specific partial differential equation represented as $$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})$$. The user initially sought a simpler equivalent differential to facilitate integration but struggled to merge the differentials. After further analysis, they derived a simplified form, ultimately expressing the equation as $$d \left( \frac{\mu}{T} \right)=-A^{-1/2}d(u^{1/4}v^{1/2})$$. A correction was provided by another user regarding the differentiation of the second term, indicating the collaborative nature of the discussion.

PREREQUISITES
  • Understanding of partial differential equations (PDEs)
  • Familiarity with differential calculus
  • Knowledge of variable transformations in PDEs
  • Experience with mathematical notation and manipulation
NEXT STEPS
  • Study the method of characteristics for solving PDEs
  • Explore the application of the chain rule in multivariable calculus
  • Learn about integrating factors in differential equations
  • Investigate numerical methods for approximating solutions to PDEs
USEFUL FOR

Mathematicians, physicists, and engineering students who are working with partial differential equations and seeking collaborative insights into solving complex mathematical problems.

Telemachus
Messages
820
Reaction score
30
I have this partial differential equation that I have to solve, and I thought that perhaps there was an easy way of solving this, like finding an equivalent differential for the right hand side of the equation, on such a way that I could get a simple differential equation, and then just integrating I could solve this.

The partial differential equation that I have to solve is this:
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})$$
Is there an easy way for solving this? the idea I had was to merge both differentials on the right side in only one differential, but I couldn't find the way.

I'm sorry, I wanted to post this in differential equations, I made a mistake posting this here.

---------- Post added at 08:36 PM ---------- Previous post was at 06:52 PM ----------

Ok. I think I got it. This is what I have done:
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})$$

So I took
$$d(A^{-1/2}u^{-3/4}v^{1/2})=A^{-1/2}(-\frac{3}{4}u^{-7/4}v^{1/2}du+\frac{1}{2}u^{-3/4}v^{-1/2}dv)$$
And in the other hand:
$$d(2A^{-1/2}u^{1/4}v^{-1/2})=A^{-1/2}(\frac{1}{2}u^{-7/4}v^{1/2}du+u^{1/4}v^{-3/2}dv)$$

Then
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})=A^{-1/2}(-\frac{3}{4}u^{-7/4}v^{1/2}du+\frac{1}{2}u^{-3/4}v^{-1/2}dv+\frac{1}{2}u^{-7/4}v^{1/2}du+u^{1/4}v^{-3/2}dv)$$
$$d \left( \frac{\mu}{T} \right )=A^{-1/2}[ -\frac{1}{4}u^{-3/4}v^{1/2}du-\frac{1}{2}u^{1/4}v^{-1/2}dv]=-\frac{1}{4}[u^{-3/4}v^{1/2}du+2u^{1/4}v^{-1/2}dv]=-A^{-1/2}d(u^{1/4}v^{1/2})$$

PD: Thanks for moving it :)
 
Last edited:
Physics news on Phys.org
Ulysses said:
I have this partial differential equation that I have to solve, and I thought that perhaps there was an easy way of solving this, like finding an equivalent differential for the right hand side of the equation, on such a way that I could get a simple differential equation, and then just integrating I could solve this.

The partial differential equation that I have to solve is this:
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})$$
Is there an easy way for solving this? the idea I had was to merge both differentials on the right side in only one differential, but I couldn't find the way.

I'm sorry, I wanted to post this in differential equations, I made a mistake posting this here.

---------- Post added at 08:36 PM ---------- Previous post was at 06:52 PM ----------

Ok. I think I got it. This is what I have done:
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})$$

So I took
$$d(A^{-1/2}u^{-3/4}v^{1/2})=A^{-1/2}(-\frac{3}{4}u^{-7/4}v^{1/2}du+\frac{1}{2}u^{-3/4}v^{-1/2}dv)$$
And in the other hand:
$$d(2A^{-1/2}u^{1/4}v^{-1/2})=A^{-1/2}(\frac{1}{2}u^{-7/4}v^{1/2}du+u^{1/4}v^{-3/2}dv)$$

Then
$$d \left( \frac{\mu}{T} \right )=ud(A^{-1/2}u^{-3/4}v^{1/2})+vd(2A^{-1/2}v^{-1/2}u^{1/4})=A^{-1/2}(-\frac{3}{4}u^{-7/4}v^{1/2}du+\frac{1}{2}u^{-3/4}v^{-1/2}dv+\frac{1}{2}u^{-7/4}v^{1/2}du+u^{1/4}v^{-3/2}dv)$$
$$d \left( \frac{\mu}{T} \right )=A^{-1/2}[ -\frac{1}{4}u^{-3/4}v^{1/2}du-\frac{1}{2}u^{1/4}v^{-1/2}dv]=-\frac{1}{4}[u^{-3/4}v^{1/2}du+2u^{1/4}v^{-1/2}dv]=-A^{-1/2}d(u^{1/4}v^{1/2})$$

PD: Thanks for moving it :)

Hi Ulysses, :)

I think you have a mistake in the third line. It should be,

\[d(2A^{-1/2}u^{1/4}v^{-1/2})=A^{-1/2}\left(\frac{1}{2}u^{-3/4}v^{-1/2}du-u^{1/4}v^{-3/2}dv\right)\]

Kind Regards,
Sudharaka.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 3 ·
Replies
3
Views
7K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 2 ·
Replies
2
Views
960
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 7 ·
Replies
7
Views
3K