MHB Pattern description: powers of a negative number

  • Thread starter Thread starter samir
  • Start date Start date
  • Tags Tags
    Negative
Click For Summary
The discussion centers on the pattern of powers of negative one, where even exponents yield positive results and odd exponents yield negative results. Participants suggest mathematical notations to describe this pattern, including $(-1)^{2k} = 1$ for even integers and $(-1)^{2k+1} = -1$ for odd integers. They also explore the concept of piece-wise functions to represent this relationship, confirming that the notation resembles a piece-wise function. The conversation touches on the broader mathematical areas involved, such as Number Theory, Discrete Mathematics, and Calculus, while acknowledging the overlap between these fields. Overall, the focus is on formalizing the description of recurring patterns in mathematics.
samir
Messages
27
Reaction score
0
Given the following pattern.

$$(-1)^{0}=1$$
$$(-1)^{1}=-1$$
$$(-1)^{2}=1$$
$$(-1)^{3}=-1$$
$$(-1)^{4}=1$$
$$(-1)^{5}=-1$$
$$(-1)^{6}=1$$
$$(-1)^{7}=-1$$
$$\ldots$$

In words, we might say that the power of a negative number is:

  • Positive for even exponents.
  • Negative for odd exponents.

How can we concisely describe this pattern using mathematical notation and symbols?

I almost asked the question "what area of mathematics studies patterns?" That would be silly! :p Almost all of them study patterns to some extent. Mathematics is all about patterns and relations. What I meant to ask is, what is the name of the area of mathematics that seeks to find a formal, symbolic way of describing recurring patterns such as these?

Is "series" and "sequences" what I'm looking for? Is this the actual name of the area? Is this a sub-category of calculus?
 
Physics news on Phys.org
samir said:
Given the following pattern.

$$(-1)^{0}=1$$
$$(-1)^{1}=-1$$
$$(-1)^{2}=1$$
$$(-1)^{3}=-1$$
$$(-1)^{4}=1$$
$$(-1)^{5}=-1$$
$$(-1)^{6}=1$$
$$(-1)^{7}=-1$$
$$\ldots$$

In words, we might say that the power of a negative number is:

  • Positive for even exponents.
  • Negative for odd exponents.

How can we concisely describe this pattern using mathematical notation and symbols?

I almost asked the question "what area of mathematics studies patterns?" That would be silly! :p Almost all of them study patterns to some extent. Mathematics is all about patterns and relations. What I meant to ask is, what is the name of the area of mathematics that seeks to find a formal, symbolic way of describing recurring patterns such as these?

Is "series" and "sequences" what I'm looking for? Is this the actual name of the area? Is this a sub-category of calculus?

Hi samir! ;)

We might write it as:

$(-1)^{2k} = 1$ and $(-1)^{2k+1} = -1$ where $k$ is an integer.

Or:
$(-1)^n = \begin{cases}1&\text{if $n$ even} \\ -1 & \text{if $n$ odd}\end{cases}$

Or as recurrence relation:

$a_{n+1} = -a_n, a_0 = 1$

If we're only talking about patterns with whole numbers, the typical area would be Number Theory.
If we're more generally talking about recurrence relations, like $a_{n+1} = -a_n$, we might end up in Discrete Mathematics.
If we're talking about real numbers, typically combined with limits, the typical area is indeed Calculus.
We might call it a sub-category of Sequences and Series, or Limits, but these types of sub categories are not really formalized.
Even the distinction between the main areas can be a bit blurry, as we can see here.
 
Hi! :)

This is what I was getting at. I like both description, but I would probably prefer the second description. I think you know me by now! I like symbols! :D

I like Serena said:
$(-1)^n = \begin{cases}1&\text{if $n$ even} \\ -1 & \text{if $n$ odd}\end{cases}$

This looks a lot like a piece-wise function?... is it? Piece-wise relation perhaps?
 
samir said:
Hi! :)

This is what I was getting at. I like both description, but I would probably prefer the second description. I think you know me by now! I like symbols! :D

This looks a lot like a piece-wise function?... is it? Piece-wise relation perhaps?

Yep. It's a piece-wise function. (Nod)
And as Deveno already mentioned, a function is a relation, a special one.
 
First trick I learned this one a long time ago and have used it to entertain and amuse young kids. Ask your friend to write down a three-digit number without showing it to you. Then ask him or her to rearrange the digits to form a new three-digit number. After that, write whichever is the larger number above the other number, and then subtract the smaller from the larger, making sure that you don't see any of the numbers. Then ask the young "victim" to tell you any two of the digits of the...

Similar threads

  • · Replies 3 ·
Replies
3
Views
719
  • · Replies 3 ·
Replies
3
Views
5K
  • · Replies 105 ·
4
Replies
105
Views
8K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 2 ·
Replies
2
Views
472
  • · Replies 4 ·
Replies
4
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 7 ·
Replies
7
Views
5K
  • · Replies 2 ·
Replies
2
Views
1K