A Phase difference between electric and magnetic dipole moment

kelly0303
Messages
573
Reaction score
33
Hello! This question is in relation to parity violation (PV) measurements using the optical rotation technique (I can give more details/references about that, but most of it is not relevant for my question). Basically, in a simplified model, they have 2 levels (say of positive parity), g and ##e_1## connected by a magnetic dipole amplitude ##A_{M_1} = <g|M_1|e_1>##. Another level ##e_2## close to ##e_1## (such that we can ignore its effect on g) has negative parity, thus, due to parity violation Hamiltonian, ##H_{PV}##, ##e_1## becomes:

$$|e_1'>=|e_1>+\frac{<e_1|H_{PV}|e_2>}{E_2-E_1}|e_2> = |e_1>+i\eta|e_2>$$
where ##E_1## and ##E_2## are the energies of the ##e_1## and ##e_2## levels (I might have messed up some signs, but that shouldn't matter for my question) and it can be shown that in general, the PV matrix element is always a purely imaginary number, hence ##i\eta = \frac{<e_1|H_{PV}|e_2>}{E_2-E_1}##. Now, in the experiments, people make use of the interference between the M1 transition and the PV effect, in order to amplify the latter one. In the 2D space spanned by g and ##e_1'##, the off diagonal matrix element is:

$$<g|M_1|e_1>+i\eta<g|E_1|e_2> = A_{M_1} + i\eta A_{E_1}$$
and the rate is the square of its modulus. However, in order to get interference i.e. a term proportional to ##\eta A_{M_1}A_{E_1}##, both terms must be either real or imaginary. However, given that ##i\eta## is purely imaginary, this implies, that in order to get the interference ##A_{M_1}## and ##A_{E_1}## should be one purely real and the other one purely imaginary. However, I am not sure I understand why and which is which. Can someone help me figure this out? Thank you!
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
If we release an electron around a positively charged sphere, the initial state of electron is a linear combination of Hydrogen-like states. According to quantum mechanics, evolution of time would not change this initial state because the potential is time independent. However, classically we expect the electron to collide with the sphere. So, it seems that the quantum and classics predict different behaviours!
Back
Top