Phase difference between electric and magnetic dipole moment

Click For Summary
SUMMARY

The discussion centers on the phase difference between electric and magnetic dipole moments in the context of parity violation (PV) measurements using optical rotation techniques. The interaction between the magnetic dipole amplitude, denoted as ##A_{M_1}##, and the PV matrix element, represented as ##i\eta##, is crucial for understanding the interference effects in experiments. The participants conclude that for effective interference to occur, one of the amplitudes must be purely real while the other must be purely imaginary, which is essential for amplifying the PV effect in the experimental setup.

PREREQUISITES
  • Understanding of parity violation (PV) in quantum mechanics
  • Familiarity with optical rotation techniques
  • Knowledge of magnetic dipole transitions and their mathematical representation
  • Basic concepts of quantum interference and matrix elements
NEXT STEPS
  • Research the mathematical framework of parity violation in quantum mechanics
  • Study the principles of optical rotation and its applications in experimental physics
  • Explore the role of magnetic dipole transitions in quantum systems
  • Investigate the conditions for quantum interference in dipole transitions
USEFUL FOR

Physicists, particularly those specializing in quantum mechanics and experimental physics, as well as researchers involved in parity violation studies and optical measurement techniques.

kelly0303
Messages
573
Reaction score
33
Hello! This question is in relation to parity violation (PV) measurements using the optical rotation technique (I can give more details/references about that, but most of it is not relevant for my question). Basically, in a simplified model, they have 2 levels (say of positive parity), g and ##e_1## connected by a magnetic dipole amplitude ##A_{M_1} = <g|M_1|e_1>##. Another level ##e_2## close to ##e_1## (such that we can ignore its effect on g) has negative parity, thus, due to parity violation Hamiltonian, ##H_{PV}##, ##e_1## becomes:

$$|e_1'>=|e_1>+\frac{<e_1|H_{PV}|e_2>}{E_2-E_1}|e_2> = |e_1>+i\eta|e_2>$$
where ##E_1## and ##E_2## are the energies of the ##e_1## and ##e_2## levels (I might have messed up some signs, but that shouldn't matter for my question) and it can be shown that in general, the PV matrix element is always a purely imaginary number, hence ##i\eta = \frac{<e_1|H_{PV}|e_2>}{E_2-E_1}##. Now, in the experiments, people make use of the interference between the M1 transition and the PV effect, in order to amplify the latter one. In the 2D space spanned by g and ##e_1'##, the off diagonal matrix element is:

$$<g|M_1|e_1>+i\eta<g|E_1|e_2> = A_{M_1} + i\eta A_{E_1}$$
and the rate is the square of its modulus. However, in order to get interference i.e. a term proportional to ##\eta A_{M_1}A_{E_1}##, both terms must be either real or imaginary. However, given that ##i\eta## is purely imaginary, this implies, that in order to get the interference ##A_{M_1}## and ##A_{E_1}## should be one purely real and the other one purely imaginary. However, I am not sure I understand why and which is which. Can someone help me figure this out? Thank you!
 

Similar threads

  • · Replies 0 ·
Replies
0
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 25 ·
Replies
25
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 6 ·
Replies
6
Views
6K
Replies
2
Views
3K