Hi i'm having trouble with this question and would like some kind of hint on how to proceed.(adsbygoogle = window.adsbygoogle || []).push({});

A photon starship starts from rest and propels itself by emitting photons in the direction opposite to its motion until it reaches a speed v. Use energy momentum conservation law to show that the ratio of the initial rest mass, m, to it's final rest mass M is

m/M = sqrt[(1+v/c)/(1-v/c)].

I'm not sure how to approach it, i think my formulation is wrong. I've looked at:

(Eo/c,0)=(E1/c,p)+kE3/c(1,n) where Eo is the original energy of the space ship as measured in the initial frame, E1 the energy after and then E3 the energy of the photon. I've added a K to account for how many photons we need to get to a velocity v. However looking at this seems to give nothing. I've also used the identity E^2=E0^2+c^2p^2 to try and get something but it goes nowhere.

Essentially i know that in order to get the final rest mass i need to be in that frame and not the initial frame. I know from the initial frame the mass will be mgamma.

Overall i think my formulation is wrong and that my view of the situation is incorrect and so would like a push in the right direction.

Thanks.

**Physics Forums | Science Articles, Homework Help, Discussion**

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: Photon Starship, energy momentum

**Physics Forums | Science Articles, Homework Help, Discussion**