, there's a rather good popular news article about the idea in "discovery.com" magazine:
http://news.discovery.com/space/could-black-holes-give-birth-to-planck-stars-140211.htm
===sample excerpt===
What goes on inside a black hole’s event horizon has actually caused a theoretical conflagration and now, two theoretical physicists have proposed a new idea that may marry quantum mechanics with gravity, extinguishing the tricky “firewall” and finding a solution to the “information paradox.”
==endquote==
==more from the discovery.com article==
…Rovelli and Vidotto looked at this problem from a different perspective. While working on models of a collapsing universe — i.e. the opposite to the Big Bang, known as the Big Crunch — they found that the fundamental quantum structure of the Universe prevents an infinitely dense singularity from forming. The collapse of the Universe therefore reaches a fundamental density, causing the universal collapse to rebound, or “bounce.”...
Say if a similar model can be used to describe a black hole?
A Planck Star Rises
If a massive star explodes as a supernova, creating a black hole in its wake, what if the superdense material that formed the black hole actually didn’t form a “singularity”? Sure, the material is unimaginably dense, but the object in the core of the black hole still has structure. Rovelli and Vidotto argue that the inward force of gravity is counteracted by the quantum structure of the Planck density.
If we were to zoom in, far beyond the size of quantum particles, it is theorized that we will reach a fundamental scale known as the Planck length. Should matter be compressed to these scales, rather than disappearing into an “infinitely dense” singularity — a solution that doesn’t make a whole lot of sense — perhaps the contraction stops at the Planck density, creating a “Planck Star” and the object rebounds, or “bounces.”
From the perspective of the Planck Star, it will be a very short-lived affair; it’s collapse and bounce would occur rapidly. But to outside observers elsewhere in the Universe (i.e. us), as space-time surrounding the Planck Star is so extremely warped, time dilation makes the black hole (and the Planck Star it contains) seem static and unchanging.
Over time, as the black hole loses mass to Hawking Radiation and the Planck Star continues to expand after the rebound, the event horizon of the black hole will slowly contract, eventually reaching the surface of the Planck Star contained within. At this point, argue the researchers, all of the information the black hole ever consumed over its lifetime will be suddenly released to the Universe — solving the “information paradox.” What’s more, we should be able to detect this deluge of information.
...
...
“(Planck Stars) produce a detectable signal, of quantum gravitational origin, around the 10
-14cm wavelength,” they write. This signal could embody itself in cosmic rays of energies in the GeV range, a signal that can be easily detected by gamma-ray observatories.
==endquote==