MHB Polynomial Challenge: Find $f(p)+f(q)+f(r)+f(s)$

AI Thread Summary
The discussion revolves around finding the value of $f(p)+f(q)+f(r)+f(s)$ for the polynomial roots of $x^4-x^3-x^2-1=0$, where $f(x)=x^6-x^5-x^3-x^2-x$. Participants initially provided incorrect answers, but corrections were made, leading to a successful solution. The final consensus confirms that the correct solution was achieved. The interaction highlights the collaborative effort in problem-solving within the forum.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The roots of $x^4-x^3-x^2-1=0$ are $p, q, r, s$. Find $f(p)+f(q)+f(r)+f(s)$, where $f(x)=x^6-x^5-x^3-x^2-x$.
 
Mathematics news on Phys.org
X^4 = x^3+x^2 +1
So x^6 = x^5 + x^4 + x^2
So x^6 – x^5 – x^3 – x^2 – x =x^4-x^3 – x = x^2- x + 1

So f(x) = x^2
Sum p = 1 and sum pq = 0

Sum p^2 =( sum p)^2 – 2 sum pq = 1
sum p = 1

so sum p^2 - p + 1 = 1
 
Last edited:
kaliprasad said:
X^4 = x^3+x^2 +1
So x^6 = x^5 + x^4 + x^2
So x^6 – x^5 – x^3 – x^2 – x =x^4-x^3 – x = x^2- x + 1

So f(x) = x^2
Sum p = 1 and sum pq = 0

Sum p^2 =( sum p)^2 – 2 sum pq = 1
sum p = 1

so sum p^2 - p + 1 = 1

Thanks for participating but I'm sorry, kaliprasad. Your answer is incorrect.
 
anemone said:
Thanks for participating but I'm sorry, kaliprasad. Your answer is incorrect.

Thanks anemone. My ans is incorrect. Here is the correct solution

We are given that(say the function is g)

g(x) = x^4-x^3 –x^2 – 1

As p,q,r,s are 4 roots we have
g(x) = 0 has solution p,q,r,s

Now x^4 – x^3 – x^2 – 1 = 0 ... (1) has solutions p,q,r,s
F(x) = x^6 – x^5 – x^3 – x^2 – x ..(2)

We need to reduce it t the lowest oder polynomial as possible

From (1) x^6 – x^5 = x^4 + x^2 ... (3)

From (2) and (3) F(x) = x^4 + x^2 – x^3 – x^2 – x = (x^3 + x^2 + 1) + x^2 – x^3 – x^2 – x
= x^2 – x + 1

So f(p) + f(q) + f(r) + f(s) = p^2 + q^2 + r^2 + s^2) – (p+q+r+s) + 4 ... (4)
Now as p q r s are roots of x^4 –x^3 – x^2 – x = 0
So using vietas formula
P + q + r + s = 1 ...(5) (
Pq + pr +ps + qr + qs + rs = - 1 ..(6)
Now p^2 + q^2 + r^2 + s^2 = (p+q+r+s)^2 – 2(pq+ Pq + pr +ps + qr + qs + rs) = 1 + 2 = 3 ... (7)

Using (5) and (7) in (4) we get

f(p) + f(q) + f(r) + f(s) = p^2 + q^2 + r^2 + s^2) – (p+q+r+s) + 4 = 3 – 1 + 4 = 6

I hope that solution is correct
 
kaliprasad said:
Thanks anemone. My ans is incorrect. Here is the correct solution

We are given that(say the function is g)

g(x) = x^4-x^3 –x^2 – 1

As p,q,r,s are 4 roots we have
g(x) = 0 has solution p,q,r,s

Now x^4 – x^3 – x^2 – 1 = 0 ... (1) has solutions p,q,r,s
F(x) = x^6 – x^5 – x^3 – x^2 – x ..(2)

We need to reduce it t the lowest oder polynomial as possible

From (1) x^6 – x^5 = x^4 + x^2 ... (3)

From (2) and (3) F(x) = x^4 + x^2 – x^3 – x^2 – x = (x^3 + x^2 + 1) + x^2 – x^3 – x^2 – x
= x^2 – x + 1

So f(p) + f(q) + f(r) + f(s) = p^2 + q^2 + r^2 + s^2) – (p+q+r+s) + 4 ... (4)
Now as p q r s are roots of x^4 –x^3 – x^2 – x = 0
So using vietas formula
P + q + r + s = 1 ...(5) (
Pq + pr +ps + qr + qs + rs = - 1 ..(6)
Now p^2 + q^2 + r^2 + s^2 = (p+q+r+s)^2 – 2(pq+ Pq + pr +ps + qr + qs + rs) = 1 + 2 = 3 ... (7)

Using (5) and (7) in (4) we get

f(p) + f(q) + f(r) + f(s) = p^2 + q^2 + r^2 + s^2) – (p+q+r+s) + 4 = 3 – 1 + 4 = 6

I hope that solution is correct

Yeah, it's correct now! Well done, kali!:cool:
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top