Polynomial Challenge: Find $f(p)+f(q)+f(r)+f(s)$

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Polynomial
Click For Summary
SUMMARY

The discussion centers on solving the polynomial equation $x^4-x^3-x^2-1=0$ to find the roots $p, q, r, s$. Participants aimed to compute $f(p)+f(q)+f(r)+f(s)$, where the function is defined as $f(x)=x^6-x^5-x^3-x^2-x$. The correct solution was confirmed by user anemone, leading to a resolution of the challenge. The interaction highlights the collaborative nature of problem-solving in mathematical forums.

PREREQUISITES
  • Understanding of polynomial equations and their roots
  • Familiarity with function evaluation in algebra
  • Knowledge of algebraic manipulation and simplification
  • Experience with mathematical problem-solving in forums
NEXT STEPS
  • Study the properties of polynomial roots and their relationships
  • Explore advanced function evaluations and transformations
  • Learn about numerical methods for finding polynomial roots
  • Investigate the application of polynomial functions in real-world scenarios
USEFUL FOR

Mathematicians, students studying algebra, and anyone interested in polynomial functions and their applications in problem-solving.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
The roots of $x^4-x^3-x^2-1=0$ are $p, q, r, s$. Find $f(p)+f(q)+f(r)+f(s)$, where $f(x)=x^6-x^5-x^3-x^2-x$.
 
Mathematics news on Phys.org
X^4 = x^3+x^2 +1
So x^6 = x^5 + x^4 + x^2
So x^6 – x^5 – x^3 – x^2 – x =x^4-x^3 – x = x^2- x + 1

So f(x) = x^2
Sum p = 1 and sum pq = 0

Sum p^2 =( sum p)^2 – 2 sum pq = 1
sum p = 1

so sum p^2 - p + 1 = 1
 
Last edited:
kaliprasad said:
X^4 = x^3+x^2 +1
So x^6 = x^5 + x^4 + x^2
So x^6 – x^5 – x^3 – x^2 – x =x^4-x^3 – x = x^2- x + 1

So f(x) = x^2
Sum p = 1 and sum pq = 0

Sum p^2 =( sum p)^2 – 2 sum pq = 1
sum p = 1

so sum p^2 - p + 1 = 1

Thanks for participating but I'm sorry, kaliprasad. Your answer is incorrect.
 
anemone said:
Thanks for participating but I'm sorry, kaliprasad. Your answer is incorrect.

Thanks anemone. My ans is incorrect. Here is the correct solution

We are given that(say the function is g)

g(x) = x^4-x^3 –x^2 – 1

As p,q,r,s are 4 roots we have
g(x) = 0 has solution p,q,r,s

Now x^4 – x^3 – x^2 – 1 = 0 ... (1) has solutions p,q,r,s
F(x) = x^6 – x^5 – x^3 – x^2 – x ..(2)

We need to reduce it t the lowest oder polynomial as possible

From (1) x^6 – x^5 = x^4 + x^2 ... (3)

From (2) and (3) F(x) = x^4 + x^2 – x^3 – x^2 – x = (x^3 + x^2 + 1) + x^2 – x^3 – x^2 – x
= x^2 – x + 1

So f(p) + f(q) + f(r) + f(s) = p^2 + q^2 + r^2 + s^2) – (p+q+r+s) + 4 ... (4)
Now as p q r s are roots of x^4 –x^3 – x^2 – x = 0
So using vietas formula
P + q + r + s = 1 ...(5) (
Pq + pr +ps + qr + qs + rs = - 1 ..(6)
Now p^2 + q^2 + r^2 + s^2 = (p+q+r+s)^2 – 2(pq+ Pq + pr +ps + qr + qs + rs) = 1 + 2 = 3 ... (7)

Using (5) and (7) in (4) we get

f(p) + f(q) + f(r) + f(s) = p^2 + q^2 + r^2 + s^2) – (p+q+r+s) + 4 = 3 – 1 + 4 = 6

I hope that solution is correct
 
kaliprasad said:
Thanks anemone. My ans is incorrect. Here is the correct solution

We are given that(say the function is g)

g(x) = x^4-x^3 –x^2 – 1

As p,q,r,s are 4 roots we have
g(x) = 0 has solution p,q,r,s

Now x^4 – x^3 – x^2 – 1 = 0 ... (1) has solutions p,q,r,s
F(x) = x^6 – x^5 – x^3 – x^2 – x ..(2)

We need to reduce it t the lowest oder polynomial as possible

From (1) x^6 – x^5 = x^4 + x^2 ... (3)

From (2) and (3) F(x) = x^4 + x^2 – x^3 – x^2 – x = (x^3 + x^2 + 1) + x^2 – x^3 – x^2 – x
= x^2 – x + 1

So f(p) + f(q) + f(r) + f(s) = p^2 + q^2 + r^2 + s^2) – (p+q+r+s) + 4 ... (4)
Now as p q r s are roots of x^4 –x^3 – x^2 – x = 0
So using vietas formula
P + q + r + s = 1 ...(5) (
Pq + pr +ps + qr + qs + rs = - 1 ..(6)
Now p^2 + q^2 + r^2 + s^2 = (p+q+r+s)^2 – 2(pq+ Pq + pr +ps + qr + qs + rs) = 1 + 2 = 3 ... (7)

Using (5) and (7) in (4) we get

f(p) + f(q) + f(r) + f(s) = p^2 + q^2 + r^2 + s^2) – (p+q+r+s) + 4 = 3 – 1 + 4 = 6

I hope that solution is correct

Yeah, it's correct now! Well done, kali!:cool:
 

Similar threads

  • · Replies 48 ·
2
Replies
48
Views
4K
Replies
3
Views
2K
Replies
1
Views
1K
  • · Replies 0 ·
Replies
0
Views
522
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K