Polynomial Challenge: Find $k$ Integral Values

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Challenge Polynomial
Click For Summary
SUMMARY

The discussion focuses on finding integral values of $k$ such that the polynomial $q(a) = a^3 + 2a + k$ divides the polynomial $p(a) = a^{12} - a^{11} + 3a^{10} + 11a^3 - a^2 + 23a + 30$. It is established that $p(a)$ has no positive roots, as demonstrated through observation and analysis of the polynomial's behavior for values of $a \geq 1$ and $0 < a < 1$. The conclusion is that $p(a)$ remains positive in these intervals, confirming the absence of positive roots.

PREREQUISITES
  • Understanding polynomial division and divisibility
  • Familiarity with polynomial root analysis
  • Knowledge of the Rational Root Theorem
  • Basic algebraic manipulation of polynomials
NEXT STEPS
  • Explore polynomial long division techniques
  • Study the Rational Root Theorem in depth
  • Investigate methods for analyzing polynomial positivity
  • Learn about the implications of polynomial degree on root behavior
USEFUL FOR

Mathematicians, algebra students, and anyone interested in polynomial theory and root analysis will benefit from this discussion.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all integral values of $k$ such that $q(a)=a^3+2a+k$ divides $p(a)=a^{12}-a^{11}+3a^{10}+11a^3-a^2+23a+30$.
 
Mathematics news on Phys.org
anemone said:
Find all integral values of $k$ such that $q(a)=a^3+2a+k$ divides $p(a)=a^{12}-a^{11}+3a^{10}+11a^3-a^2+23a+30$.
let:$p(a)=a^{12}-a^{11}+3a^{10}+11a^3-a^2+23a+30----(1)$
p(a) has no positive root and p(a) has at most two negative roots
if (1)=0 then the solutions of (1) must be negative
if a<0 is the integer root of (1) then a divides 30
by checking a=-1
$\therefore q(-1)=-1-2+k=0 $
we have :$k=3$
 
Albert said:
let:$p(a)=a^{12}-a^{11}+3a^{10}+11a^3-a^2+23a+30----(1)$
p(a) has no positive root
Thanks for your solution, Albert!:) But, how do you conclude that $p(a)$ has no positive root(s)? I'm sensing perhaps you're using some theorem that I'm not aware of?
 
anemone said:
Thanks for your solution, Albert!:) But, how do you conclude that $p(a)$ has no positive root(s)? I'm sensing perhaps you're using some theorem that I'm not aware of?
it is easy to conclude that $p(a)$ has no positive root (only by observation)
if $a\geq 1$ then :
$p(a)=(a^{12}-a^{11})+(11a^3-a^2)+3a^{10}+23a+30>0$
if $0<a< 1$ then :
$p(a)=(3a^{10}-a^{11})+(23a-a^2)+a^{12}+11a^3+30>0$
 
Albert said:
it is easy to conclude that $p(a)$ has no positive root (only by observation)
if $a\geq 1$ then :
$p(a)=(a^{12}-a^{11})+(11a^3-a^2)+3a^{10}+23a+30>0$
if $0<a< 1$ then :
$p(a)=(3a^{10}-a^{11})+(23a-a^2)+a^{12}+11a^3+30>0$

Ah I see. Thanks for the clarification reply, Albert!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
3
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 7 ·
Replies
7
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 13 ·
Replies
13
Views
2K