MHB Polynomial Challenge: Find $k$ Integral Values

AI Thread Summary
The discussion focuses on finding integral values of \( k \) such that the polynomial \( q(a) = a^3 + 2a + k \) divides \( p(a) = a^{12} - a^{11} + 3a^{10} + 11a^3 - a^2 + 23a + 30 \). It is established that \( p(a) \) has no positive roots, which is supported by observations for values of \( a \) greater than or equal to 1 and between 0 and 1. Participants clarify the reasoning behind this conclusion, emphasizing the positivity of \( p(a) \) in these ranges. The thread highlights the importance of understanding polynomial behavior to solve for \( k \). Overall, the discussion centers on polynomial divisibility and root analysis.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find all integral values of $k$ such that $q(a)=a^3+2a+k$ divides $p(a)=a^{12}-a^{11}+3a^{10}+11a^3-a^2+23a+30$.
 
Mathematics news on Phys.org
anemone said:
Find all integral values of $k$ such that $q(a)=a^3+2a+k$ divides $p(a)=a^{12}-a^{11}+3a^{10}+11a^3-a^2+23a+30$.
let:$p(a)=a^{12}-a^{11}+3a^{10}+11a^3-a^2+23a+30----(1)$
p(a) has no positive root and p(a) has at most two negative roots
if (1)=0 then the solutions of (1) must be negative
if a<0 is the integer root of (1) then a divides 30
by checking a=-1
$\therefore q(-1)=-1-2+k=0 $
we have :$k=3$
 
Albert said:
let:$p(a)=a^{12}-a^{11}+3a^{10}+11a^3-a^2+23a+30----(1)$
p(a) has no positive root
Thanks for your solution, Albert!:) But, how do you conclude that $p(a)$ has no positive root(s)? I'm sensing perhaps you're using some theorem that I'm not aware of?
 
anemone said:
Thanks for your solution, Albert!:) But, how do you conclude that $p(a)$ has no positive root(s)? I'm sensing perhaps you're using some theorem that I'm not aware of?
it is easy to conclude that $p(a)$ has no positive root (only by observation)
if $a\geq 1$ then :
$p(a)=(a^{12}-a^{11})+(11a^3-a^2)+3a^{10}+23a+30>0$
if $0<a< 1$ then :
$p(a)=(3a^{10}-a^{11})+(23a-a^2)+a^{12}+11a^3+30>0$
 
Albert said:
it is easy to conclude that $p(a)$ has no positive root (only by observation)
if $a\geq 1$ then :
$p(a)=(a^{12}-a^{11})+(11a^3-a^2)+3a^{10}+23a+30>0$
if $0<a< 1$ then :
$p(a)=(3a^{10}-a^{11})+(23a-a^2)+a^{12}+11a^3+30>0$

Ah I see. Thanks for the clarification reply, Albert!
 
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top