MHB Polynomial Challenge: Find Real Solutions

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Find the number of distinct real solutions of the equation

$(x − 1)(x − 3)(x − 5) · · · (x − 2017) = (x − 2)(x − 4)(x − 6) · · · (x − 2016)$.
 
Mathematics news on Phys.org
anemone said:
Find the number of distinct real solutions of the equation

$(x − 1)(x − 3)(x − 5) · · · (x − 2017) = (x − 2)(x − 4)(x − 6) · · · (x − 2016)$.

the above is same as
$P(x) = (x - 1)(x - 3)(x - 5) \cdots (x - 2017) - (x - 2)(x - 4)(x - 6) \cdots (x - 2016)= 0$
This is a polynomial of degree 1009.
this has product of 1009 terms in the 1st term
now let us compute P(2n) for n = 1 to 1008
this is +ve for n odd( as in 1st term there are n positive and 1009-n -ve terms
and 2nd term is zero) and -ve for n even. and $P(-\infty) < 0$ and $P(\infty) > 0$ so sign changes 1009 times
so 1009 real roots.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top