MHB Polynomials and Roots: Properties and Analysis

  • Thread starter Thread starter mente oscura
  • Start date Start date
  • Tags Tags
    Polynomials Roots
mente oscura
Messages
167
Reaction score
0
Hello.

I open this 'thread', in number theory, but he also wears "calculation".

I've done a little research, I share with you.

Let \ r_1, r_2, \cdots, r_n, roots of the polynomial.

P(x)=p_0x^n+p_1x^{n-1}+ \cdots+p_{n-1}x+p_n

Let \ Q(x)=q_0 x^n+q_1x^{n-1}+ \cdots +q_n, such that its roots are:

r_1-1, r_2-1, \cdots, r_n-1

Let \ T(x)=t_0^n+t_1x^{n-1}+ \cdots +t_n, such that its roots are:

r_1+1, r_2+1, \cdots, r_n+1

I will assume:

p_0=q_0=t_0=1Therefore:

\displaystyle\sum_{i=0}^n(p_i)=q_n

and

\displaystyle\sum_{i=0}^n(p_i)(-1)^{i+1}=t_n, if “n” it's even.

\displaystyle\sum_{i=0}^n(p_i)(-1)^i=t_n, if “n” it's odd.

Also I have found how to calculate "complete", recurrently cited polynomials.

Example:

P(x)=x^9-33x^8+149x^7+4431x^6-45669x^5+9081x^4+1506119x^3-7038363x^2+12556936x-7987980

Sum of coefficients=-995328, addition and subtraction of alternate coefficients=-29030400

Roots:-11, -7, 2, 2, 3, 5, 7, 13, 19.Q(x)=x^9-24x^8-79x^7+4634x^6-17676x^5-149768x^4+1177824x^3-2853504x^2+2833920x-995328

Sum of coefficients=0, addition and subtraction of alternate coefficients=-7987980

Roots:-12, -8, 1, 1, 2, 4, 6, 12, 18.T(x)=x^9-42x^8+449x^7+2380x^6-67152x^5+296240x^4+931632x^3-10983168x^2+30862080x-29030400

Sum of coefficients=-7987980, addition and subtraction of alternate coefficients=-71442000

Roots:-10, -6, 3, 3, 4, 6, 8, 14, 20.

This procedure can be useful for the analysis of the possible roots of the polynomial, and its factorization.

Regards.
 
Last edited:
Mathematics news on Phys.org
Hello.

Continuing with the topic.

I'm going to show, with an example, as it would generate a polynomial, with the roots of the original polynomial, decreased in 1 unit:

P(x)=x^9-33x^8+149x^7+4431x^6-45669x^5+9081x^4+1506119x^3-7038363x^2+12556936x-7987980

Sum of coefficients=-995328

Roots:-11, -7, 2, 2, 3, 5, 7, 13, 19.Q(x)=x^9-24x^8-79x^7+4634x^6-17676x^5-149768x^4+1177824x^3-2853504x^2+2833920x-995328

Roots:-12, -8, 1, 1, 2, 4, 6, 12, 18.
1º) Separate term=Sum of coefficients of P(x)=-995328

2º) Coefficient of x:

\dfrac{P'(x)}{1}=9x^8-264x^7+1043x^6+26586x^5-228345x^4+36324x^3+4518357x^2-14076726x+12556936

Coefficient of x, the new polynomialQ(x)=Sum of coefficients \dfrac{P'(x)}{1}=2833920.

3º) Coefficient of x^2:

\dfrac{P''(x)}{2}=36x^7-924x^6+3129x^5+66465x^4-456690x^3+54486x^2+4518357x-7038363.

Sum of coefficients=-2853504.

4º) Coefficient of x^3:

\dfrac{P'''(x)}{3!}=84x^6-1848x^5+5215x^4+88620x^3-456690x^2+36324x+1506119.

Sum of coefficients=1177824.

5º) Coefficient of x^4:

\dfrac{P''''(x)}{4!}=126x^5-2310x^4+5215x^3+66465x^2-228345x+9081.

Sum of coefficients=-149768.

6º) Coefficient of x^5:

\dfrac{P'''''(x)}{5!}=126x^4-1848x^3+3129x^2+26586x-45669.

Sum of coefficients=-17676.

7º) Coefficient of x^6:

\dfrac{P''''''(x)}{6!}=84x^3-924x^2+1043x+4431.

Sum of coefficients=4634.

8º) Coefficient of x^7:

\dfrac{P'''''''(x)}{7!}=36x^2-264x+149

Sum of coefficients=-79.

9º) Coefficient of x^8:

\dfrac{P''''''''(x)}{8!}=9x-33

Sum of coefficients=-24.

10º) Coefficient of x^9:

\dfrac{P'''''''''(x)}{9!}=1.

Therefore, the resulting polynomial is:

Q(x)=x^9-24x^8-79x^7+4634x^6-17676x^5-149768x^4+1177824x^3-2853504x^2+2833920x-995328

Regards.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top