Power, Rpm, Torque - Horsepower increase for my small engine

AI Thread Summary
The discussion centers on achieving power comparable to a high-performance chainsaw (Stihl MS 880) using a larger lawn mower engine. Key factors affecting engine power include Brake Mean Effective Pressure (BMEP), mean piston speed, total bore area, and volumetric efficiency. Increasing these parameters significantly, particularly volumetric efficiency through tuning or forced induction, is suggested as the most feasible approach. Users debate whether a 16hp John Deere engine can outperform the chainsaw without major modifications, noting its stock power is already approximately double that of the chainsaw. Overall, modifications will likely require stronger components to handle increased power demands.
ThinkR
Messages
3
Reaction score
1
Hello all, the short story is, I am basically trying to get the same ( or a little more) “power” out of a larger lawn mower type gas engine ( vertical shaft) as one of the largest (120 ish cc) chainsaws ( ref the Stihl MS 880 or newer 881 at approx 10-12k rpm and 9 Hp)
The parameters are : a relatively small form and weight as close to that of the chainsaw as feasible. (but I realize at least double is likely). With off the shelf parts for the most part. I have already built an aluminum “power plate” to hold such a motor and trans which simply has 2 bearings and 5/8” shafts to transfer the power with a centrifugal clutch on the motor side with an approx 2 inch sprocket and an approx 8” sprocket on the driven side. It does not have enough “ power” to drive my machine. TIA to all who participate.
 
Engineering news on Phys.org
The engine power is directly related to:
  • Brake Mean Effective Pressure (BMEP)
  • Mean piston speed (= RPM X Stroke)
  • Total Bore area (= piston bore area X number of pistons)
  • Volumetric efficiency
Double any of those (without altering the others) and you will double your power. Or increase each of them by 19% and you will also double the power.

Stroke and bore seem to be what you don't want to change so this leaves:
  • BMEP: Doubling it is very unlikely. Your best bet is changing the fuel and/or adding oxygen (i.e. injecting nitrous).
  • Mean piston speed (through the RPM): Doubling it is very unlikely because it is usually optimized for power vs reliability. But if you can accept losing reliability, you might get some room here.
  • Volumetric efficiency: Probably your best bet overall. It is usually done with force induction (turbo or supercharger). But if your engine intake and exhaust systems are not already tuned, redesigning them would make a big difference without any reliability consequences.
Increasing each of these three things by 26% will also double your power.

Except for intake & exhaust systems tuning, any modification will most likely require stronger components (piston, connecting rod, crankshaft, etc.) for great power increases, or at least machining with tight tolerances (blueprinting).
 
  • Informative
  • Like
Likes ThinkR and berkeman
Wow. Great response. Thank you.
 
  • Like
Likes jack action
ThinkR said:
Hello all, the short story is, I am basically trying to get the same ( or a little more) “power” out of a larger lawn mower type gas engine ( vertical shaft) as one of the largest (120 ish cc) chainsaws ( ref the Stihl MS 880 or newer 881 at approx 10-12k rpm and 9 Hp)
The parameters are : a relatively small form and weight as close to that of the chainsaw as feasible. (but I realize at least double is likely). With off the shelf parts for the most part. I have already built an aluminum “power plate” to hold such a motor and trans which simply has 2 bearings and 5/8” shafts to transfer the power with a centrifugal clutch on the motor side with an approx 2 inch sprocket and an approx 8” sprocket on the driven side. It does not have enough “ power” to drive my machine. TIA to all who participate.
jack action said:
The engine power is directly related to:
  • Brake Mean Effective Pressure (BMEP)
  • Mean piston speed (= RPM X Stroke)
  • Total Bore area (= piston bore area X number of pistons)
  • Volumetric efficiency
Double any of those (without altering the others) and you will double your power. Or increase each of them by 19% and you will also double the power.

Stroke and bore seem to be what you don't want to change so this leaves:
  • BMEP: Doubling it is very unlikely. Your best bet is changing the fuel and/or adding oxygen (i.e. injecting nitrous).
  • Mean piston speed (through the RPM): Doubling it is very unlikely because it is usually optimized for power vs reliability. But if you can accept losing reliability, you might get some room here.
  • Volumetric efficiency: Probably your best bet overall. It is usually done with force induction (turbo or supercharger). But if your engine intake and exhaust systems are not already tuned, redesigning them would make a big difference without any reliability consequences.
Increasing each of these three things by 26% will also double your power.

Except for intake & exhaust systems tuning, any modification will most likely require stronger components (piston, connecting rod, crankshaft, etc.) for great power increases, or at least machining with tight tolerances (blueprinting).
I guess what I am asking is, for those who really know the math, will the 16hp John Deere be able to make a little more power ( however calculated) than the Stihl Ms 880 chainsaw without major modifications or is there another powerplant out there that will do the job. What I am trying to avoid is the cost ($2000) and noise of the big chainsaw.
 
ThinkR said:
I guess what I am asking is, for those who really know the math, will the 16hp John Deere be able to make a little more power ( however calculated) than the Stihl Ms 880 chainsaw without major modifications or is there another powerplant out there that will do the job. What I am trying to avoid is the cost ($2000) and noise of the big chainsaw.
If you have a 16hp John Deere, it’s already about double the stock HP of that chainsaw?
 
  • Like
Likes jack action
Thread 'What type of toilet do I have?'
I was enrolled in an online plumbing course at Stratford University. My plumbing textbook lists four types of residential toilets: 1# upflush toilets 2# pressure assisted toilets 3# gravity-fed, rim jet toilets and 4# gravity-fed, siphon-jet toilets. I know my toilet is not an upflush toilet because my toilet is not below the sewage line, and my toilet does not have a grinder and a pump next to it to propel waste upwards. I am about 99% sure that my toilet is not a pressure assisted...
After over 25 years of engineering, designing and analyzing bolted joints, I just learned this little fact. According to ASME B1.2, Gages and Gaging for Unified Inch Screw Threads: "The no-go gage should not pass over more than three complete turns when inserted into the internal thread of the product. " 3 turns seems like way to much. I have some really critical nuts that are of standard geometry (5/8"-11 UNC 3B) and have about 4.5 threads when you account for the chamfers on either...
Back
Top