A Power series in quantum mechanics

gremory
Messages
3
Reaction score
0
TL;DR Summary
Power series to solving the infinite square well
Just earlier today i was practicing solving some ODEs with the power series method and when i did it to the infinite square well i noticed that my final answer for ##\psi(x)## wouldn't give me the quantised energies. My solution was
$$\psi(x) = \sum^{\infty}_{n=0} k^{2n}(\cos(x) + \sin(x))$$, with ##k = \frac{\sqrt{2mE}}{\hbar}##. I want to know what's the catch when doing this because we need the boundary conditions to quantize the energies and with this solution i don't see how i would get that.
 
Last edited:
Physics news on Phys.org
\psi(x) = \sum^{\infty}_{n=0} k^{2n}(\cos(x) + \sin(x))=(\cos(x) + \sin(x)) \sum^{\infty}_{n=0} k^{2n}=\psi(x,k)

so something seems wrong. Where are the edges of infinite well ?
 
Last edited:
I am not sure if this falls under classical physics or quantum physics or somewhere else (so feel free to put it in the right section), but is there any micro state of the universe one can think of which if evolved under the current laws of nature, inevitably results in outcomes such as a table levitating? That example is just a random one I decided to choose but I'm really asking about any event that would seem like a "miracle" to the ordinary person (i.e. any event that doesn't seem to...
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...

Similar threads

Replies
21
Views
3K
Replies
4
Views
227
Replies
6
Views
2K
Replies
27
Views
3K
Replies
5
Views
2K
Replies
14
Views
2K
Back
Top