POTW Power Sums Limits: Evaluating $\lim_{n\to \infty}$

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
The discussion focuses on evaluating the limits of the sum of k-th powers of the first n natural numbers, denoted as S_k(n). The first limit, $$\lim_{n\to \infty} \frac{S_k(n)}{n^k}$$, converges to $$\frac{1}{k+1}$$. The second limit, $$\lim_{n\to\infty} \left(\frac{S_k(n)}{n^k} - \frac{n}{k+1}\right)$$, approaches 0 as n approaches infinity. Participants clarify the importance of including the correct terms in the limits for accurate evaluation. Overall, the discussion emphasizes the convergence properties of power sums in relation to their growth rates.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
If ##n## and ##k## are positive integers, let ##S_k(n)## be the sum of ##k##-th powers of the first ##n## natural numbers, i.e., $$S_k(n) = 1^k + 2^k + \cdots + n^k$$ Evaluate the limits $$\lim_{n\to \infty} \frac{S_k(n)}{n^k}$$ and $$\lim_{n\to\infty} \left(\frac{S_k(n)}{n^k} - \frac{n}{k+1}\right)$$
 
Last edited:
Physics news on Phys.org
\frac{S_1(n)}{n}=\frac{n(n+1)}{2n} \rightarrow +\infty
\frac{S_2(n)}{n^2}=\frac{n(n+1)(2n+1)}{6n^2} \rightarrow +\infty
\frac{S_3(n)}{n^3}=\frac{n^2(n+1)^2}{4n^3} \rightarrow +\infty
\frac{S_4(n)}{n^4}=\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30n^4} \rightarrow +\infty
\frac{S_5(n)}{n^5}=\frac{n^2(n+1)^2(2n^2+2n-1)}{12n^5} \rightarrow +\infty
In general
\frac{S_k(n)}{n^k}=1+\frac{1}{k+1}\sum_{j=0}^k \ _{k+1}C_j B_j n^{1-j} =\frac{n}{k+1}+\frac{1}{2}+ o(1/n) \rightarrow +\infty
where ##B_j## are Bernoulli numbers.
\frac{S_k(n)}{n^k}-\frac{n}{k+1} \rightarrow \frac{1}{2}
 
Last edited:
Easier is to recognise 1^k + \dots + n^k as the upper Darboux sum for \int_0^n x^k\,dx with respect to the partition \{0, 1, \dots, n\}. It follows that <br /> 1^k + \dots + n^k \geq \int_0^n x^k\,dx = \frac{n^{k+1}}{k+1}. Hence <br /> \frac{S_k(n)}{n^k} \geq \frac{n}{k+1} \to \infty.
 
Sorry, there was a term missing in the limit in the OP. I've made an edit to include the original limit.