POTW Power Sums Limits: Evaluating $\lim_{n\to \infty}$

  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Limit
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
If ##n## and ##k## are positive integers, let ##S_k(n)## be the sum of ##k##-th powers of the first ##n## natural numbers, i.e., $$S_k(n) = 1^k + 2^k + \cdots + n^k$$ Evaluate the limits $$\lim_{n\to \infty} \frac{S_k(n)}{n^k}$$ and $$\lim_{n\to\infty} \left(\frac{S_k(n)}{n^k} - \frac{n}{k+1}\right)$$
 
Last edited:
Physics news on Phys.org
\frac{S_1(n)}{n}=\frac{n(n+1)}{2n} \rightarrow +\infty
\frac{S_2(n)}{n^2}=\frac{n(n+1)(2n+1)}{6n^2} \rightarrow +\infty
\frac{S_3(n)}{n^3}=\frac{n^2(n+1)^2}{4n^3} \rightarrow +\infty
\frac{S_4(n)}{n^4}=\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30n^4} \rightarrow +\infty
\frac{S_5(n)}{n^5}=\frac{n^2(n+1)^2(2n^2+2n-1)}{12n^5} \rightarrow +\infty
In general
\frac{S_k(n)}{n^k}=1+\frac{1}{k+1}\sum_{j=0}^k \ _{k+1}C_j B_j n^{1-j} =\frac{n}{k+1}+\frac{1}{2}+ o(1/n) \rightarrow +\infty
where ##B_j## are Bernoulli numbers.
\frac{S_k(n)}{n^k}-\frac{n}{k+1} \rightarrow \frac{1}{2}
 
Last edited:
Easier is to recognise 1^k + \dots + n^k as the upper Darboux sum for \int_0^n x^k\,dx with respect to the partition \{0, 1, \dots, n\}. It follows that <br /> 1^k + \dots + n^k \geq \int_0^n x^k\,dx = \frac{n^{k+1}}{k+1}. Hence <br /> \frac{S_k(n)}{n^k} \geq \frac{n}{k+1} \to \infty.
 
Sorry, there was a term missing in the limit in the OP. I've made an edit to include the original limit.
 
Back
Top