Power Sums Limits: Evaluating $\lim_{n\to \infty}$

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
  • Tags Tags
    Limit
Click For Summary
SUMMARY

The discussion focuses on evaluating the limits of power sums, specifically $$\lim_{n\to \infty} \frac{S_k(n)}{n^k}$$ and $$\lim_{n\to\infty} \left(\frac{S_k(n)}{n^k} - \frac{n}{k+1}\right)$$ where ##S_k(n)## represents the sum of the ##k##-th powers of the first ##n## natural numbers. The first limit converges to $$\frac{1}{k+1}$$, while the second limit evaluates to $$0$$. These results are derived using the formula for power sums and the properties of limits.

PREREQUISITES
  • Understanding of limits in calculus
  • Familiarity with power sums and their formulas
  • Knowledge of asymptotic analysis
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study the formula for power sums, specifically $$S_k(n)$$
  • Learn about the properties of limits in calculus
  • Explore asymptotic behavior of sequences and series
  • Investigate applications of power sums in number theory
USEFUL FOR

Mathematicians, students studying calculus, and anyone interested in advanced topics in number theory and limits.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
If ##n## and ##k## are positive integers, let ##S_k(n)## be the sum of ##k##-th powers of the first ##n## natural numbers, i.e., $$S_k(n) = 1^k + 2^k + \cdots + n^k$$ Evaluate the limits $$\lim_{n\to \infty} \frac{S_k(n)}{n^k}$$ and $$\lim_{n\to\infty} \left(\frac{S_k(n)}{n^k} - \frac{n}{k+1}\right)$$
 
Last edited:
  • Like
Likes   Reactions: topsquark
Physics news on Phys.org
\frac{S_1(n)}{n}=\frac{n(n+1)}{2n} \rightarrow +\infty
\frac{S_2(n)}{n^2}=\frac{n(n+1)(2n+1)}{6n^2} \rightarrow +\infty
\frac{S_3(n)}{n^3}=\frac{n^2(n+1)^2}{4n^3} \rightarrow +\infty
\frac{S_4(n)}{n^4}=\frac{n(n+1)(2n+1)(3n^2+3n-1)}{30n^4} \rightarrow +\infty
\frac{S_5(n)}{n^5}=\frac{n^2(n+1)^2(2n^2+2n-1)}{12n^5} \rightarrow +\infty
In general
\frac{S_k(n)}{n^k}=1+\frac{1}{k+1}\sum_{j=0}^k \ _{k+1}C_j B_j n^{1-j} =\frac{n}{k+1}+\frac{1}{2}+ o(1/n) \rightarrow +\infty
where ##B_j## are Bernoulli numbers.
\frac{S_k(n)}{n^k}-\frac{n}{k+1} \rightarrow \frac{1}{2}
 
Last edited:
Easier is to recognise 1^k + \dots + n^k as the upper Darboux sum for \int_0^n x^k\,dx with respect to the partition \{0, 1, \dots, n\}. It follows that <br /> 1^k + \dots + n^k \geq \int_0^n x^k\,dx = \frac{n^{k+1}}{k+1}. Hence <br /> \frac{S_k(n)}{n^k} \geq \frac{n}{k+1} \to \infty.
 
Sorry, there was a term missing in the limit in the OP. I've made an edit to include the original limit.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 21 ·
Replies
21
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K