MHB Predicates and Quanitifiers - Can't understand Question

  • Thread starter Thread starter Tvtakaveli
  • Start date Start date
Tvtakaveli
Messages
5
Reaction score
0
Hi I'm new here but can't get my head around this problem.

We use the predicates O and B, with domain the integers. O(n) is true if n is odd, and
B(n) is true if n if big, which here means that n > 100.
(a) Express ∀m, n ∈ Z|O(m) ∧ B(n) ⇒ B(n − m) in conversational English.
(b) Find a counter-example to this statement.

Now i take it two ways;
Just expressing the imply part of the statement so,
The difference between n and m is big.

Or is it deeper than that like;
For every m, n is an element of Z and so m is odd and n is big. This implies the difference between n and m is big.

Thank you for the help!
 
Physics news on Phys.org
Tvtakaveli said:
(a) Express ∀m, n ∈ Z|O(m) ∧ B(n) ⇒ B(n − m) in conversational English.
I assume that ∧ binds stronger than ⇒ (similar to times and plus, respectively). This is a usual convention. Then the formula should be read literally. The part after | has the form P ⇒ Q. Such formula is read "If P, then Q". Next, the assumption P is O(m) ∧ B(n). This is read "m is odd and n is big". Finally, the conclusion Q of the implication is B(n − m), which is read "n - m is big". Altogether the quantifier-free part is "If m is odd and n is big, then n - m is big". Adding the quantifiers gives the final answer:

For all m and n, if m is odd and n is big, then n - m is big.

I would say that if it is stipulated that the domain is the set of integers, it is not necessary to say "for all integer m and n": this is assumed.
 
Hi, thanks for clearing that up, I really appreciate it.

So just to confirm, producing a counter statement would just be substituting values. E. G.

Let m = 9 and n=105. 105-9 =96 which is not big (>100) therefore the statement is irrational.
 
Tvtakaveli said:
Let m = 9 and n=105. 105-9 =96 which is not big (>100) therefore the statement is irrational.
Yes. The only remark is that statements can be true or false, and real numbers can be rational or irrational.
 
Last edited:
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Thread 'Detail of Diagonalization Lemma'
The following is more or less taken from page 6 of C. Smorynski's "Self-Reference and Modal Logic". (Springer, 1985) (I couldn't get raised brackets to indicate codification (Gödel numbering), so I use a box. The overline is assigning a name. The detail I would like clarification on is in the second step in the last line, where we have an m-overlined, and we substitute the expression for m. Are we saying that the name of a coded term is the same as the coded term? Thanks in advance.

Similar threads

Back
Top