Efficient Prime Number Algorithm: Seeking Feedback and Offering Unique Insights

  • Thread starter Thread starter MechaMiles
  • Start date Start date
  • Tags Tags
    Algorithm Prime
Click For Summary
The discussion centers on a prime-seeking algorithm that, while not computationally superior to existing methods, provides unique insights into the nature of prime and composite numbers. The author partitions natural numbers using a structural schema, claiming that odd composite numbers can be expressed as sums of consecutive integers of a certain length. Feedback indicates that the algorithm's testing method, which checks bases up to N/3, lacks efficiency. However, the author emphasizes that the goal is not merely efficiency but to inspire new perspectives in number theory, particularly through the lens of algebraic geometry. The community appreciates the innovative approach, even if it does not yield new theorems.
MechaMiles
Messages
6
Reaction score
0
I would really like to get some constructive feed back on this prime-seeking algorithm. Computationally it's no better than the rest. However, it does offer some unique insight.
I have partitioned the set of naturals between prime and composites using a rigorous structural schema that I prove in the following thesis:

https://sites.google.com/site/primenumbertheory/home/the-prime-thesis

Let me know what you think. I appreciate any further insight the community can offer me.
Shalom.
 
Last edited by a moderator:
Physics news on Phys.org
The article is quite long, so I skipped a few parts.

If I understand correctly, your observation is that any odd composite number N is a sum of a series of consequtive integers of length < √N. This is a nice property, I for one didn't know it, and it wasn't covered in my number theory course.

But I don't understand what the algorithm is. From what I could gather, you test all the bases for the sequence, from 1 up to N/3, and check if they start a sequence that sums up to N.
This doesn't seem very efficient. Is this what you meant?
 
You have understood the primitive algorithm. You're right, it's not efficient. However, it is generalized as the thesis develops and removes all impossible values in the set of test subjects (you have to read the whole paper to understand this). Still, the fully developed algorithm is not all that efficient as a prime tester. The idea, however, is not to render a computationally efficient prime test so much as to stimulate and promote the idea that if natural number theory could be placed on some geometric palette, the key to primes might unfold.
 
I believe number theory involves a great deal of algebraic geometry nowadays. It's not at all like the approach in your paper, but if this leads to something, it'll be wonderful.
Even if you don't prove new theorems, elementary proofs of existing theorems are ofter enlightening.

PS. I liked your use of Hebrew variables in the paper. Nice touch.
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 228 ·
8
Replies
228
Views
37K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
8
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 17 ·
Replies
17
Views
4K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 39 ·
2
Replies
39
Views
15K