A Prime Number Powers of Integers and Fermat's Last Theorem

e2m2a
Messages
354
Reaction score
13
TL;DR Summary
Need understanding of an integer to a perfect power raised to the power of a prime number as it relates to Fermat's Last Theorem.
From my research I have found that since Fermat proved his last theorem for the n=4 case, one only needs to prove his theorem for the case where n=odd prime where c^n = a^n + b^n. But I am not clear on some points relating to this. For example, what if we have the term (c^x)^p, where c is an integer, x = even integer, and p = odd prime. Then we can express this term as c^(xp) and we would have c^(xp)=a^n +b^n. Clearly, xp is no longer an odd prime. So, does this mean to prove Fermat's Last Theorem for the case where n=odd prime, then neither of the bases c,a,b themselves can be an integer that is raised to an even numbered power?
 
Mathematics news on Phys.org
If ##c^{xp}=a^{xp} +b^{xp}## is a counterexample for the exponent n=xp then ##(c^x)^p = (b^x)^p + (a^x)^p## is a counterexample with exponent p. If you can show that there is no counterexample for p then there can't be a counterexample for np for any positive n. It doesn't matter what a,b,c are.

Every integer larger than 2 is a multiple of an odd prime or a multiple of 4, so we only need to show that there are no counterexamples for odd primes and for the number 4.
 
  • Like
Likes pbuk and PeroK
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Thread 'Imaginary Pythagorus'
I posted this in the Lame Math thread, but it's got me thinking. Is there any validity to this? Or is it really just a mathematical trick? Naively, I see that i2 + plus 12 does equal zero2. But does this have a meaning? I know one can treat the imaginary number line as just another axis like the reals, but does that mean this does represent a triangle in the complex plane with a hypotenuse of length zero? Ibix offered a rendering of the diagram using what I assume is matrix* notation...
Back
Top