Probabilities about length of songs

  • Context: MHB 
  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Length Probabilities
Click For Summary
SUMMARY

This discussion focuses on calculating probabilities related to song lengths in a playlist of 2000 songs, where the average length is 3.5 minutes with a standard deviation of 1.7 minutes. The participants derive the probability that a randomly chosen song exceeds 4.5 minutes and confirm the calculations for the average length of 100 songs being at least 4 minutes, yielding a probability of approximately 0.0016. Additionally, they analyze the total length of 200 songs, concluding that the probability of this total being at most 700 minutes is 0.5. The calculations utilize the Central Limit Theorem and properties of normal distributions.

PREREQUISITES
  • Understanding of normal distribution and its properties
  • Familiarity with the Central Limit Theorem
  • Basic knowledge of random variables and their expectations
  • Ability to perform probability calculations using the cumulative distribution function (CDF)
NEXT STEPS
  • Learn how to apply the Central Limit Theorem in different contexts
  • Study the properties of normal distributions in depth
  • Explore advanced probability concepts such as confidence intervals and hypothesis testing
  • Investigate statistical software tools for performing probability calculations
USEFUL FOR

Statisticians, data analysts, and anyone interested in probability theory and its applications in real-world scenarios, particularly in music analytics and data science.

mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :o

We have a playlist with $2000$ songs. The length of the songs on the playlist are on average $3.5$ minutes (i.e. $3$ minutes and $30$ seconds) with a standard deviation of $1.7$ minutes.

1) Can we find the probability that a randomly chosen song is longer than $4.5$ minutes?

2) Can we findthe probability that a random selection of $100$ songs lasts on average at least $4$ minutes?

3) Can we find the probability that a random selection of $200$ songs lasts in total at most $700$ minutes?

I have done the following:

Let $X_i$ be the RV that describes the length of the $i$-th song.

$\overline{X}_n=\frac{1}{n}(X_1+X_2+\ldots +X_n)$ is the mean.

$\overline{X}_n$ approximates, according the central limit theorem, a normal distribution with parameters $E(\overline{X}_n)=3.5$ and $V(\overline{X}_n)=\frac{\sigma_X^2}{n}=\frac{1.7^2}{n}=\frac{2.89}{n}$. Is this correct?

How could we find the probability at 1) ? (Wondering) At 2) we want to calculate the probability $P(\overline{X}\geq 4)$ with $n=100$ right?

If this is correct, we have that $$P(\overline{X}\geq 4)=1-P(\overline{X}< 4)=1-\Phi \left (\frac{4-3.5}{\frac{1.7}{\sqrt{100}}}\right )\approx 1-\Phi (2.94)=1-0.9984=0.0016$$

Is everything correct? (Wondering) At 3) we define a new RV $Z:=n\cdot \overline{X}_n$ which describes the sum of lengths of $n$ songs.

For $n=200$ we have that $E(Z)=E(200\overline{X}_{200})=200\cdot E(\overline{X}_{200})=200\cdot 3.5=700$ and $V(Z)=V(200\overline{X}_{200})=200^2\cdot V(\overline{X}_{200})=200^2\cdot \frac{2.89}{200}=578$

Then $$P(Z\geq 700)=\Phi \left (\frac{700-700}{\sqrt{578}}\right )=\Phi (0)=0.5$$

Is this correct? (Wondering)
 
Physics news on Phys.org
mathmari said:
How could we find the probability at 1) ?

Hey mathmari!

Doesn't one randomly chosen song have distribution $X\sim N(3.5, 1.7)$? (Wondering)
Then we need to find $P(X>4.5)$.

mathmari said:
At 2) we want to calculate the probability $P(\overline{X}\geq 4)$ with $n=100$ right?

If this is correct, we have that $$P(\overline{X}\geq 4)=1-P(\overline{X}< 4)=1-\Phi \left (\frac{4-3.5}{\frac{1.7}{\sqrt{100}}}\right )\approx 1-\Phi (2.94)=1-0.9984=0.0016$$

Looks fine to me. (Nod)

mathmari said:
At 3) we define a new RV $Z:=n\cdot \overline{X}_n$ which describes the sum of lengths of $n$ songs.

For $n=200$ we have that $E(Z)=E(200\overline{X}_{200})=200\cdot E(\overline{X}_{200})=200\cdot 3.5=700$ and $V(Z)=V(200\overline{X}_{200})=200^2\cdot V(\overline{X}_{200})=200^2\cdot \frac{2.89}{200}=578$

Then $$P(Z\geq 700)=\Phi \left (\frac{700-700}{\sqrt{578}}\right )=\Phi (0)=0.5$$

Shouldn't that be $P(Z \le 700)$? (Wondering)
Otherwise it looks fine to me.

Btw, we could also define $Z=X_1+...+X_{100}$, so that $EZ = 100\cdot EX_i$ and $\sigma^2(Z) = 100^2\cdot \sigma^2(X_i)$.
No need to introduce $\overline X$. (Nerd)
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
Replies
10
Views
3K
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 18 ·
Replies
18
Views
3K