MHB Probability expectations with n

  • Thread starter Thread starter Carla1985
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
The discussion revolves around calculating expected values using a discrete probability distribution function, specifically P{ξ = n} = (3/4)(1/4)^n. Participants clarify the application of the series sum for expected value calculations, leading to E{ξ} = 1/3 and E{(-3)ξ} = 3/7. Confusion arises regarding the coefficients in the series, particularly whether to use 3/4 or 1/4 in the calculations. After addressing the misunderstanding, the correct approach is confirmed, and gratitude is expressed for the assistance. The thread highlights the importance of careful application of series in probability calculations.
Carla1985
Messages
91
Reaction score
0
I'm stuck on this question. I've done plenty of the questions with numbers etc but not sure how to deal with the n case for this one.

View attachment 689

Thank you :)
 

Attachments

  • Screen Shot 2013-03-10 at 21.40.25.png
    Screen Shot 2013-03-10 at 21.40.25.png
    25.2 KB · Views: 81
Physics news on Phys.org
Carla1985 said:
I'm stuck on this question. I've done plenty of the questions with numbers etc but not sure how to deal with the n case for this one.

View attachment 689

Thank you :)

If the discrete p.d.f. is...

$\displaystyle P \{ \xi = n \} = \frac{3}{4}\ (\frac{1}{4})^{n}$ (1)

... then, tacking into account that is...

$\displaystyle \sum_{n=0}^{\infty} n\ x^{n} = \frac{x} {(1-x)^{2}}$ (2)

... You obtain...

$\displaystyle E \{ \xi \} = \frac{3}{4}\ \sum_{n=0}^{\infty} n\ (\frac{1}{4})^{n} = \frac{\frac{3}{4}\ \frac{1}{4}}{(\frac{3}{4})^{2}} = \frac{1}{3}$ (3)

Regarding (ii) by definition is...

$\displaystyle E \{ (-3)^{\xi} \} = \frac{3}{4}\ \sum_{n=0}^{\infty} (-3)^{n}\ (\frac{1}{4})^{n} = \frac{3}{4} \frac{1}{1+\frac{3}{4}} = \frac{3}{7}$ (4)Kind regards$\chi$ $\sigma$
 
Last edited:
chisigma said:
... You obtain...

$\displaystyle E \{ \xi \} = \frac{3}{4}\ \sum_{n=0}^{\infty} n\ (\frac{1}{4})^{n} = \frac{\frac{3}{4}}{(\frac{3}{4})^{2}} = \frac{4}{3}$ (3)
Im confused by this part. If i use the series from the line above taking x to be 1/4 isn't it 1/4 on top instead of 3/4? or have i missed something?
Thanks for the help x
 
Carla1985 said:
Im confused by this part. If i use the series from the line above taking x to be 1/4 isn't it 1/4 on top instead of 3/4? or have i missed something?
Thanks for the help x

All right!... the mistake has been corrected... thak You very much!...

Kind regards

$\chi$ $\sigma$
 
Thats fab, thanks very much for the help x
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...
I'm taking a look at intuitionistic propositional logic (IPL). Basically it exclude Double Negation Elimination (DNE) from the set of axiom schemas replacing it with Ex falso quodlibet: ⊥ → p for any proposition p (including both atomic and composite propositions). In IPL, for instance, the Law of Excluded Middle (LEM) p ∨ ¬p is no longer a theorem. My question: aside from the logic formal perspective, is IPL supposed to model/address some specific "kind of world" ? Thanks.