Probability expectations with n

  • Context: MHB 
  • Thread starter Thread starter Carla1985
  • Start date Start date
  • Tags Tags
    Probability
Click For Summary
SUMMARY

The discussion focuses on calculating expected values using a discrete probability distribution function (p.d.f.) defined as P{ξ = n} = (3/4)(1/4)ⁿ. The expected value E{ξ} is derived using the formula E{ξ} = (3/4)Σ(n(1/4)ⁿ), resulting in E{ξ} = 4/3. Additionally, the expected value E{(-3)ⁱ} is calculated as E{(-3)ⁱ} = (3/4)/(1 + 3/4) = 3/7. The conversation highlights a common confusion regarding the application of the series and the coefficients involved.

PREREQUISITES
  • Understanding of discrete probability distributions
  • Familiarity with expected value calculations
  • Knowledge of summation series, particularly Σ(n xⁿ)
  • Basic algebraic manipulation of fractions and series
NEXT STEPS
  • Study the derivation of expected values in discrete probability distributions
  • Learn about generating functions and their applications in probability
  • Explore convergence of infinite series and their implications in statistics
  • Investigate the properties of geometric series and their use in calculating expected values
USEFUL FOR

Students and professionals in statistics, data science, and mathematics who are working with discrete probability distributions and expected value calculations.

Carla1985
Messages
91
Reaction score
0
I'm stuck on this question. I've done plenty of the questions with numbers etc but not sure how to deal with the n case for this one.

View attachment 689

Thank you :)
 

Attachments

  • Screen Shot 2013-03-10 at 21.40.25.png
    Screen Shot 2013-03-10 at 21.40.25.png
    25.2 KB · Views: 86
Physics news on Phys.org
Carla1985 said:
I'm stuck on this question. I've done plenty of the questions with numbers etc but not sure how to deal with the n case for this one.

View attachment 689

Thank you :)

If the discrete p.d.f. is...

$\displaystyle P \{ \xi = n \} = \frac{3}{4}\ (\frac{1}{4})^{n}$ (1)

... then, tacking into account that is...

$\displaystyle \sum_{n=0}^{\infty} n\ x^{n} = \frac{x} {(1-x)^{2}}$ (2)

... You obtain...

$\displaystyle E \{ \xi \} = \frac{3}{4}\ \sum_{n=0}^{\infty} n\ (\frac{1}{4})^{n} = \frac{\frac{3}{4}\ \frac{1}{4}}{(\frac{3}{4})^{2}} = \frac{1}{3}$ (3)

Regarding (ii) by definition is...

$\displaystyle E \{ (-3)^{\xi} \} = \frac{3}{4}\ \sum_{n=0}^{\infty} (-3)^{n}\ (\frac{1}{4})^{n} = \frac{3}{4} \frac{1}{1+\frac{3}{4}} = \frac{3}{7}$ (4)Kind regards$\chi$ $\sigma$
 
Last edited:
chisigma said:
... You obtain...

$\displaystyle E \{ \xi \} = \frac{3}{4}\ \sum_{n=0}^{\infty} n\ (\frac{1}{4})^{n} = \frac{\frac{3}{4}}{(\frac{3}{4})^{2}} = \frac{4}{3}$ (3)
Im confused by this part. If i use the series from the line above taking x to be 1/4 isn't it 1/4 on top instead of 3/4? or have i missed something?
Thanks for the help x
 
Carla1985 said:
Im confused by this part. If i use the series from the line above taking x to be 1/4 isn't it 1/4 on top instead of 3/4? or have i missed something?
Thanks for the help x

All right!... the mistake has been corrected... thak You very much!...

Kind regards

$\chi$ $\sigma$
 
Thats fab, thanks very much for the help x
 

Similar threads

  • · Replies 13 ·
Replies
13
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 57 ·
2
Replies
57
Views
6K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 29 ·
Replies
29
Views
4K